122 research outputs found

    Crucial Roles of 5-HT and 5-HT2 Receptor in Diabetes-Related Lipid Accumulation and Pro-Inflammatory Cytokine Generation in Hepatocytes

    Get PDF
    Background/Aims: Previously, we confirmed that liver-synthesized 5-HT rather than non-liver 5-HT, acting on the 5-HT2 receptor (5-HT2R), modulates lipid-induced excessive lipid synthesis (ELS). Here, we further revealed the effects of the hepatocellular 5-HT system in diabetes-related disorders. Methods: Studies were conducted in male ICR mice, human HepG2 cells, and primary mouse hepatocytes (PMHs) under gene or chemical inhibition of the 5-HT system, key lipid metabolism, and inflammation-related factors. Protein and messenger RNA expression and levels of the factors were determined via western blotting, reverse transcription PCR, and quantitative assay kits, respectively. Hepatic steatosis with inflammation and fibrosis, intracellular lipid droplet accumulation (LDA), and reactive oxygen species (ROS) location were determined via hematoxylin and eosin, Masson’s trichrome, Oil red O, and fluorescent-specific staining, respectively. Results: Palmitic acid induced the activation of the 5-HT system: the activation of 5-HT2R, primarily 5-HT2AR, in addition to upregulating monoamine oxidase A (MAO-A) expression and 5-HT synthesis, by activating the G protein/ phospholipase C pathway modulated PKCε activation, resulting in ELS with LDA; the activation of NF-κB, which mediates the generation of pro-inflammatory cytokines, was primarily due to ROS generation in the mitochondria induced by MAO-A–catalyzed 5-HT degradation, and secondarily due to the activation of PKCε. These effects of the 5-HT system were also detected in palmitic acid- or high glucose-treated PMHs and regulated multiple inflammatory signaling pathways. In diabetic mice, co-treatment with antagonists of both 5-HT synthesis and 5-HT2R significantly abolished hepatic steatosis, inflammation, and fibrosis as well as hyperglycemia and dyslipidemia. Conclusion: Activation of the hepatocellular 5-HT system plays a crucial role in inducing diabetes-related hepatic dysfunction and is a potential therapeutic target

    MicroRNA Transcriptomic Analysis of Heterosis during Maize Seed Germination

    Get PDF
    Heterosis has been utilized widely in the breeding of maize and other crops, and plays an important role in increasing yield, improving quality and enhancing stresses resistance, but the molecular mechanism responsible for heterosis is far from clear. To illustrate whether miRNA-dependent gene regulation is responsible for heterosis during maize germination, a deep-sequencing technique was applied to germinating embryos of a maize hybrid, Yuyu22, which is cultivated widely in China and its parental inbred lines, Yu87-1 and Zong3. The target genes of several miRNAs showing significant expression in the hybrid and parental lines were predicted and tested using real-time PCR. A total of 107 conserved maize miRNAs were co-detected in the hybrid and parental lines. Most of these miRNAs were expressed non-additively in the hybrid compared to its parental lines. These results indicated that miRNAs might participate in heterosis during maize germination and exert an influence via the decay of their target genes. Novel miRNAs were predicted follow a rigorous criterion and only the miRNAs detected in all three samples were treated as a novel maize miRNA. In total, 34 miRNAs belonged to 20 miRNA families were predicted in germinating maize seeds. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid showed higher embryo germination vigor compared to its parental lines

    Identification of QTLs for Arsenic Accumulation in Maize (Zea mays L.) Using a RIL Population

    Get PDF
    The Arsenic (As) concentration in different tissues of maize was analyzed using a set of RIL populations derived from an elite hybrid, Nongda108. The results showed that the trend of As concentration in the four measured tissues was leaves>stems>bracts>kernels. Eleven QTLs for As concentration were detected in the four tissues. Three QTLs for As concentration in leaves were mapped on chromosomes 1, 5, and 8, respectively. For As concentration in the bracts, two QTLs were identified, with 9.61% and 10.03% phenotypic variance. For As concentration in the stems, three QTLs were detected with 8.24%, 14.86%, and 15.23% phenotypic variance. Three QTLs were identified for kernels on chromosomes 3, 5, and 7, respectively, with 10.73%, 8.52%, and 9.10% phenotypic variance. Only one common chromosomal region between SSR marker bnlg1811 and umc1243 was detected for QTLs qLAV1 and qSAC1. The results implied that the As accumulation in different tissues in maize was controlled by different molecular mechanism. The study demonstrated that maize could be a useful plant for phytoremediation of As-contaminated paddy soil, and the QTLs will be useful for selecting inbred lines and hybrids with low As concentration in their kernels

    Molecular mechanisms of flowering phenology in trees

    Get PDF
    Flower initiation is a phenological developmental process strictly regulated in all flowering plants. Studies in Arabidopsis thaliana, a model plant organism in plant biology and genetics, and major cereal crops have provided fundamental knowledge and understanding of the underlying molecular mechanisms and regulation in annuals. However, this flowering process and underly molecular mechanisms in perennials are much more complicated than those in annuals and remain poorly understood and documented. In recent years, the increasing availability of perennial plant genomes and advances in biotechnology have allowed the identification and characterization of flowering-associated gene orthologs in perennials. In this review, we compared and summarized the recent progress in regulation of flowering time in perennial trees, with an emphasis on the perennial-specific regulatory mechanisms. Pleiotropic effects on tree growth habits such as juvenility, seasonal activity–dormancy growth, and the applications of tree flowering phenology are discussed

    Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees

    Get PDF
    The seasonally synchronized annual growth cycle that is regulated mainly by photoperiod and temperature cues is a crucial adaptive strategy for perennial plants in boreal and temperate ecosystems.Phytochrome B (phyB), as a light and thermal sensor, has been extensively studied in Arabidopsis. However, the specific mechanisms for how the phytochrome photoreceptors control the phenology in tree species remain poorly understood.We characterized the functions of PHYB genes and their downstream PHYTOCHROME INTERACTING FACTOR (PIF) targets in the regulation of shade avoidance and seasonal growth in hybrid aspen trees. We show that while phyB1 and phyB2, as phyB in other plants, act as suppressors of shoot elongation during vegetative growth, they act as promoters of tree seasonal growth. Furthermore, while the Populus homologs of both PIF4 and PIF8 are involved in the shade avoidance syndrome (SAS), only PIF8 plays a major role as a suppressor of seasonal growth.Our data suggest that the PHYB-PIF8 regulon controls seasonal growth through the regulation of FT and CENL1 expression while a genome-wide transcriptome analysis suggests how, in Populus trees, phyB coordinately regulates SAS responses and seasonal growth cessation

    Regeneration and Agrobacterium-mediated genetic transformation of twelve Eucalyptus species

    Get PDF
    Eucalyptus is a genus of over 900 species and hybrids, and many of them are valuable fast-growing hardwoods. Due to its economic importance, Eucalyptus is one of the early tree species whose genomes were deciphered. However, the lack of efficient genetic transformation systems severely restricts the functional genomic research on the plant. The success of Eucalyptus regeneration and transformation depends greatly on the genotypes and explants. In this study, we systematically screened 26 genotypes from 12 Eucalyptus species in an attempt to obtain Eucalyptus genotypes with high regeneration potential. We developed two common regeneration media that can be applied to most tested Eucalyptus genotypes for both seeding hypocotyls and cloned internodes as explants. We then implemented DsRed2 as a visual marker for genetic transformation efficiency test. Our results suggest that E. camaldulen and E. robusta are amenable for genetic transformation. Finally, we successfully set up a stable Agrobacterium-mediated genetic transformation procedure for both E. camaldulen and E. robusta using seeding hypocotyls and cloned internodes respectively. Taken together, our study provides valuable means for vegetative propagation, gene transformation, CRISPR based gene mutagenesis, activation and suppression, as well as functional characterization of genes in Eucalyptus

    Data Dictionary Design for Travel Time Acquiring System Based on 3GS

    No full text

    Influences of welding speed on microstructure and mechanical properties of friction stir welded Al–Mg alloy with high Mg content

    No full text
    In this work, the influences of welding speed on microstructure and mechanical properties in friction stir welding (FSW) of the hot-rolled Al-9.2Mg-0.8Mn-0.2Zr-0.15Ti alloy plates has been investigated. Microstructures and mechanical properties of the joints are characterized by electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with electron dispersive spectroscopy (EDS), hardness and tensile testing. The results show that all the joints are free of volume defects at the welding speed of 25–100 mm min ^−1 and the fixed rotation rate of 1000 rpm. And all the nugget zones (NZs) are characteristics of fine grains with the high angle grain boundaries (HAGBs) fraction higher than 90% at the welding speed of 25–100 mm min ^−1 . The mean grain size in NZs and tensile properties of joints exhibit a parabolic relation with the welding speed. Furthermore, the optimal welding parameters are the welding speed of 50 mm min ^−1 and the rotation rate of 1000 rpm. The as-prepared joint at 50 mm min ^−1 , featured with the smallest grain size of 3.02 μ m and a uniform distribution of the fine second phase particles in NZ, exhibits the highest elongation to rupture about 45% higher than the base metal (22.2 ± 1.6%) and the highest ultimate tensile strength efficiency of 87.4%. It can be attribute to the synergetic effect of the fine-grain structure with the high HAGBs fraction and the small second phase particles with a uniform distribution

    microRNA-dependent gene regulatory networks in maize leaf senescence

    No full text
    © 2016 Wu et al. Background: Maize grain yield depends mainly on the photosynthetic efficiency of functional leaves, which is controlled by an array of gene networks and other factors, including environmental conditions. MicroRNAs (miRNAs) are small RNA molecules that play important roles in plant developmental regulation. A few senescence-associated miRNAs (SA-miRNAs) have been identified as important participants in regulating leaf senescence by modulating the expression levels of their target genes. Results: To elucidate miRNA roles in leaf senescence and their underlying molecular mechanisms in maize, a stay-green line, Yu87-1, and an early leaf senescence line, Early leaf senescence-1 (ELS-1), were selected as experimental materials for the differential expression of candidate miRNAs. Four small RNA libraries were constructed from ear leaves at 20 and 30 days after pollination and sequenced by Illumina deep sequencing technology. Altogether, 81 miRNAs were detected in both lines. Of these, 16 miRNAs of nine families were differentially expressed between ELS-1 andYu87-1. The phenotypic and chlorophyll content analyses of both lines identified these 16 differentially expressed miRNAs as candidate SA-miRNAs. Conclusions: In this study, 16 candidate SA-miRNAs of ELS-1 were identified through small RNA deep sequencing technology. Degradome sequencing results indicated that these candidate SA-miRNAs may regulate leaf senescence through their target genes, mainly transcription factors, and potentially control chlorophyll degradation pathways. The results highlight the regulatory roles of miRNAs during leaf senescence in maize
    • …
    corecore