1,196 research outputs found

    Electron Self-Energy of High Temperature Superconductors as Revealed by Angle Resolved Photoemission

    Full text link
    In this paper, we review some of the work our group has done in the past few years to obtain the electron self-energy of high temperature superconductors by analysis of angle-resolved photoemission data. We focus on three examples which have revealed: (1) a d-wave superconducting gap, (2) a collective mode in the superconducting state, and (3) pairing correlations in the pseudogap phase. In each case, although a novel result is obtained which captures the essense of the data, the conventional physics used leads to an incomplete picture. This indicates that new physics needs to be developed to obtain a proper understanding of these materials.Comment: 5 pages, revtex, 3 encapsulated postscript figures, SNS97 proceeding

    Characteristics and Sensing Properties of the La1-xNdxCo0.3Fe0.7O3 System for CO Gas Sensors

    Get PDF
    A series of nanostructured La1-xNdxCo0.3Fe0.7O3 perovskite-type (x ranging from 0 to 1) were prepared using the co-precipitation method. CO gas sensing properties of La1-xNdxCo0.3Fe0.7O3 sensors were performed. La0.7Nd0.3Co0.3Fe0.7O3 sensor showed the highest response at 250 °C (S=52.8)

    On the determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy

    Full text link
    We study the normal state electronic excitations probed by angle resolved photoemission spectroscopy (ARPES) in Bi2201 and Bi2212. Our main goal is to establish explicit criteria for determining the Fermi surface from ARPES data on strongly interacting systems where sharply defined quasiparticles do not exist and the dispersion is very weak in parts of the Brillouin zone. Additional complications arise from strong matrix element variations within the zone. We present detailed results as a function of incident photon energy, and show simple experimental tests to distinguish between an intensity drop due to matrix element effects and spectral weight loss due to a Fermi crossing. We reiterate the use of polarization selection rules in disentangling the effect of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite all the complications, the Fermi surface can be determined unambiguously: it is a single large hole barrel centered about (pi,pi) in both materials.Comment: Expanded discussion of symmetrization method in Section 5, figures remain the sam

    Evolution of the pairing pseudogap in the spectral function with interplane anisotropy

    Full text link
    We study the pairing pseudogap in the spectral function as a function of interplane coupling. The analytical expressions for the self-energy in the critical regime are obtained for any degree of anisotropy. The frequency dependence of the self-energy is found to be qualitatively different in two and three dimensions, and the crossover from two to three dimensional behavior is discussed. In particular, by considering the anisotropy of the Fermi velocity and gap along the Fermi surface, we can qualitatively explain recent photoemission experiments on high temperature superconductors concerning the temperature dependent Fermi arcs seen in the pseudogap phase.Comment: 20 pages, revtex, 5 encapsulated postscript figures include

    Seismic Emissions from a Highly Impulsive M6.7 Solar Flare

    Full text link
    On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond with previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-ray, visible continuum, and radio emission. Time-distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential--field extrapolations in the flaring region suggests that there is a significant inverse correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.Comment: 16 pages, 7 figures, Solar Physics Topical Issue: SOHO 19/GONG 2007 "Seismology of Magnetic Activity", Accepte

    Classification of protein interaction sentences via gaussian processes

    Get PDF
    The increase in the availability of protein interaction studies in textual format coupled with the demand for easier access to the key results has lead to a need for text mining solutions. In the text processing pipeline, classification is a key step for extraction of small sections of relevant text. Consequently, for the task of locating protein-protein interaction sentences, we examine the use of a classifier which has rarely been applied to text, the Gaussian processes (GPs). GPs are a non-parametric probabilistic analogue to the more popular support vector machines (SVMs). We find that GPs outperform the SVM and na\"ive Bayes classifiers on binary sentence data, whilst showing equivalent performance on abstract and multiclass sentence corpora. In addition, the lack of the margin parameter, which requires costly tuning, along with the principled multiclass extensions enabled by the probabilistic framework make GPs an appealing alternative worth of further adoption

    Parameterized Verification of Safety Properties in Ad Hoc Network Protocols

    Full text link
    We summarize the main results proved in recent work on the parameterized verification of safety properties for ad hoc network protocols. We consider a model in which the communication topology of a network is represented as a graph. Nodes represent states of individual processes. Adjacent nodes represent single-hop neighbors. Processes are finite state automata that communicate via selective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this model we consider a decision problem that can be expressed as the verification of the existence of an initial topology in which the execution of the protocol can lead to a configuration with at least one node in a certain state. The decision problem is parametric both on the size and on the form of the communication topology of the initial configurations. We draw a complete picture of the decidability and complexity boundaries of this problem according to various assumptions on the possible topologies.Comment: In Proceedings PACO 2011, arXiv:1108.145

    Nature of the Electronic Excitations near the Brillouin Zone Boundary of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Based on angle resolved photoemission spectra measured on different systems at different dopings, momenta and photon energies, we show that the anomalously large spectral linewidth in the (π,0)(\pi,0) region of optimal doped and underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} has significant contributions from the bilayer splitting, and that the scattering rate in this region is considerably smaller than previously estimated. This new picture of the electronic excitation near (π,0)(\pi,0) puts additional experimental constraints on various microscopic theories and data analysis.Comment: 5 pages, 4 figure

    Transient Magnetic and Doppler Features Related to the White-light Flares in NOAA 10486

    Full text link
    Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km s1^{-1}. These features were located near the previously reported compact acoustic \cite{Donea05} and seismic sources \cite{Zharkova07}. We examine the origin of these features and their relationship with various aspects of the flares, {\it viz.}, hard X-ray emission sources and flare kernels observed at different layers - (i) photosphere (white-light continuum), (ii) chromosphere (Hα\alpha 6563\AA), (iii) temperature minimum region (UV 1600\AA), and (iv) transition region (UV 284\AA).Comment: 26 pages, 13 figures, 2 tables, accepted for publication in Solar Physic
    corecore