171 research outputs found

    Effects of Anthropogenic Emission Control and Meteorology Changes on the Inter-Annual Variations of PM2.5–AOD Relationship in China

    Get PDF
    We identified controlling factors of the inter-annual variations of surface PM2.5–aerosol optical depth (AOD) relationship in China from 2006 to 2017 using a nested 3D chemical transport model—GEOS-Chem. We separated the contributions from anthropogenic emission control and meteorological changes by fixing meteorology at the 2009 level and fixing anthropogenic emissions at the 2006 level, respectively. Both observations and model show significant downward trends of PM2.5/AOD ratio (η, p < 0.01) in the North China Plain (NCP), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) in 2006–2017. The model suggests that the downward trends are mainly attributed to anthropogenic emission control. PM2.5 concentration reduces faster at the surface than aloft due to the closeness of surface PM2.5 to emission sources. The Pearson correlation coefficient of surface PM2.5 and AOD (rPM-AOD) shows strong inter-annual variations (±27%) but no statistically significant trends in the three regions. The inter-annual variations of rPM-AOD are mainly determined by meteorology changes. Except for the well-known effects from relative humidity, planetary boundary layer height and wind speed, we find that temperature, tropopause pressure, surface pressure and atmospheric instability are also important meteorological elements that have a strong correlation with inter-annual variations of rPM-AOD in different seasons. This study suggests that as the PM2.5–AOD relationship weakens with reduction of anthropogenic emissions, validity of future retrieval of surface PM2.5 using satellite AOD should be carefully evaluated

    Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing

    Get PDF
    PM2.5 retrieval from satellite-observed aerosol optical depth (AOD) is still challenging due to the strong impact of meteorology. We investigate influences of meteorology changes on the inter-annual variations of AOD and surface PM2.5 in China between 2006 and 2017 using a nested 3D chemical transport model, GEOS-Chem, by fixing emissions at the 2006 level. We then identify major meteorological elements controlling the inter-annual variations of AOD and surface PM2.5 using multiple linear regression. We find larger influences of meteorology changes on trends of AOD than that of surface PM2.5. On the seasonal scale, meteorology changes are beneficial to AOD and surface PM2.5 reduction in spring (1–50%) but show an adverse effect on aerosol reduction in summer. In addition, major meteorological elements influencing variations of AOD and PM2.5 are similar between spring and fall. In winter, meteorology changes are favorable to AOD reduction (−0.007 yr−1, −1.2% yr−1; p < 0.05) but enhanced surface PM2.5 between 2006 and 2017. The difference in winter is mainly attributed to the stable boundary layer that isolates surface PM2.5 from aloft. The significant decrease in AOD over the years is related to the increase in meridional wind speed at 850 hPa in NCP (p < 0.05). The increase of surface PM2.5 in NCP in winter is possibly related to the increased temperature inversion and more stable stratification in the boundary layer. This suggests that previous estimates of wintertime surface PM2.5 using satellite measurements of AOD corrected by meteorological elements should be used with caution. Our findings provide potential meteorological elements that might improve the retrieval of surface PM2.5 from satellite-observed AOD on the seasonal scale

    Electrical Mobility as an Indicator for Flexibly Deducing the Kinetics of Nanoparticle Evaporation

    Get PDF
    Condensation and evaporation of vapor species on nanopartide surfaces drive the aerosol evolution in various industrial/atmospheric systems, but probing these transient processes is challenging due to related time and length scales. Herein, we present a novel methodology for deducing nanoparticle evaporation kinetics using electrical mobility as a natural size indicator. Monodispersed nanopartides are fed to a differential mobility analyzer which serves simultaneously as an evaporation flowtube and an instrument for measuring the electrical mobility, realizing measurements of evaporation processes with time scales comparable to the instrument response time. A theoretical framework is derived for deducing the evaporation kinetics from instrument responses through analyzing the nanopartide trajectory and size-mobility relationship, which considers the coupled mass and heat transfer effect and is applicable to the whole Knudsen number range. The methodology is demonstrated against evaporation but can potentially be extended to condensation and other industrial/atmospheric processes involving rapid size change of nanoparticles.Peer reviewe

    Two charged strangeonium-like structures observable in the Y(2175)→ϕ(1020)π+π−Y(2175) \to \phi(1020)\pi^{+} \pi^{-} process

    Full text link
    Via the Initial Single Pion Emission (ISPE) mechanism, we study the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution of Y(2175)→ϕ(1020)π+π−Y(2175) \to \phi(1020)\pi^{+} \pi^{-}. Our calculation indicates there exist a sharp peak structure (Zs1+Z_{s1}^+) close to the KKˉ∗K\bar{K}^\ast threshold and a broad structure (Zs2+Z_{s2}^+) near the K∗Kˉ∗K^\ast\bar{K}^\ast threshold. In addition, we also investigate the ϕ(1680)→ϕ(1020)π+π−\phi(1680) \to \phi(1020)\pi^{+} \pi^{-} process due to the ISPE mechanism, where a sharp peak around the KKˉ∗K\bar{K}^\ast threshold appears in the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution. We suggest to carry out the search for these charged strangeonium-like structures in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.

    Particulate matter pollution over China and the effects of control policies

    Get PDF
    China is one of the regions with highest PM(2.5)concentration in the world. In this study, we review the spatio-temporal distribution of PM2.5 mass concentration and components in China and the effect of control measures on PM2.5 concentrations. Annual averaged PM2.5 concentrations in Central-Eastern China reached over 100 mu g m(-3), in some regions even over 150 mu g m(-3). In 2013, only 4.1% of the cities attained the annual average standard of 35 mu g m(-3). Aitken mode particles tend to dominate the total particle number concentration. Depending on the location and time of the year, new particle formation (NPF) has been observed to take place between about 10 and 60% of the days. In most locations, NPF was less frequent at high PM mass loadings. The secondary inorganic particles (i.e., sulfate, nitrate and ammonium) ranked the highest fraction among the PM2.5 species, followed by organic matters (OM), crustal species and element carbon (EC), which accounted for 6-50%, 15-51%, 5-41% and 2-12% of PM2.5, respectively. In response to serious particulate matter pollution, China has taken aggressive steps to improve air quality in the last decade. As a result, the national emissions of primary PM2.5, sulfur dioxide (SO2), and nitrogen oxides (NOx) have been decreasing since 2005, 2006, and 2011, respectively. The emission control policies implemented in the last decade could result in noticeable reduction in PM2,(5)concentrations, contributing to the decreasing PM2.5 trends observed in Beijing, Shanghai, and Guangzhou. However, the control policies issued before 2010 are insufficient to improve PM2.5 air quality notably in future. An optimal mix of energy-saving and end-of-pipe control measures should be implemented, more ambitious control policies for NMVOC and NH3 should be enforced, and special control measures in winter should be applied. 40-70% emissions should be cut off to attain PM2.5 standard. (C) 2017 Elsevier B.V.All rights reserved.Peer reviewe

    Solitary fibrous tumor of the adrenal gland: a case report and review of the literature

    Get PDF
    Solitary fibrous tumor (SFT) is a rare mesenchymal tumor, probably of fibroblastic origin, mainly in the extremities and pleura. Primary SFT of the adrenal gland is clinically more rare. Here, we report the case of a 47-year-old woman who detected a left adrenal mass on physical examination, without any symptoms, and no laboratory abnormalities. A computed tomography (CT) examination of the adrenal gland suggested a round-like soft tissue density shadow in the left adrenal area. An unenhanced scan showed uneven density of the mass, with a scattered circular-like cystic low-density shadow inside, and an enhanced scan showed obvious uneven enhancement. We considered it to be adrenal pheochromocytoma. Ultimately, the patient was treated with laparoscopic left adrenalectomy. A pathological examination suggested an adrenal SFT. We reviewed previous case reports of adrenal SFTs and summarized the clinical characteristics of adrenal SFT combined with the relevant literature. For adrenal tumors with uneven low-density shadow and uneven CT enhancement features, we should consider the differential diagnosis of adrenal SFT
    • …
    corecore