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Abstract: We identified controlling factors of the inter-annual variations of surface PM2.5–aerosol
optical depth (AOD) relationship in China from 2006 to 2017 using a nested 3D chemical transport
model—GEOS-Chem. We separated the contributions from anthropogenic emission control and
meteorological changes by fixing meteorology at the 2009 level and fixing anthropogenic emissions
at the 2006 level, respectively. Both observations and model show significant downward trends
of PM2.5/AOD ratio (η, p < 0.01) in the North China Plain (NCP), the Yangtze River Delta (YRD)
and the Pearl River Delta (PRD) in 2006–2017. The model suggests that the downward trends are
mainly attributed to anthropogenic emission control. PM2.5 concentration reduces faster at the
surface than aloft due to the closeness of surface PM2.5 to emission sources. The Pearson correlation
coefficient of surface PM2.5 and AOD (rPM-AOD) shows strong inter-annual variations (±27%) but no
statistically significant trends in the three regions. The inter-annual variations of rPM-AOD are mainly
determined by meteorology changes. Except for the well-known effects from relative humidity,
planetary boundary layer height and wind speed, we find that temperature, tropopause pressure,
surface pressure and atmospheric instability are also important meteorological elements that have a
strong correlation with inter-annual variations of rPM-AOD in different seasons. This study suggests
that as the PM2.5–AOD relationship weakens with reduction of anthropogenic emissions, validity of
future retrieval of surface PM2.5 using satellite AOD should be carefully evaluated.

Keywords: PM2.5–AOD relationship; inter-annual variations; anthropogenic emission control;
meteorology changes

1. Introduction

Long-term exposure to ambient fine particles (PM2.5) in China causes more than
1 million early deaths every year [1,2]. To protect human health, it is critical to evaluate
human exposure using high-resolution surface PM2.5 data. However, nationwide surface in
situ measurements of PM2.5 were sparse and unavailable until 2013. Thus, studies usually
retrieve surface PM2.5 with horizontal resolution of 1–10 km using satellite aerosol optical
depth (AOD) with large spatial and temporal coverage [3–6].

Accurate retrieval of surface PM2.5 from satellite AOD requires a strong PM2.5–AOD
relationship [7]. Studies use PM2.5/AOD ratio (η) and linear correlation coefficient of
PM2.5 and AOD (rPM-AOD) to quantify the PM2.5–AOD relationship. Wang [8] explored the
correlation between AOD from Moderate Resolution Imaging Spectroradiometer (MODIS)
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and hourly surface PM2.5 measurements in Jefferson county, Alabama, and showed a strong
correlation (rPM-AOD = 0.7) for daily average and even stronger correlation for a monthly
mean (rPM-AOD > 0.9). Strong correlations were also observed in Beijing (rPM-AOD = 0.79) [9]
and at background sites in the North China Plain (NCP) [10] and in Nanjing in the Yangtze
River Delta (YRD) [11] in China. However, nationwide studies [7,12] showed large spatial
variations of rPM-AOD in 368 cities across China (0.01 < rPM-AOD < 0.88) in 2013–2017.
Specifically, the rPM-AOD value is high in central China and relatively lower in eastern
coastal regions and western arid regions [12,13]. Similar results were found using AOD
products with a finer spatiotemporal resolution, such as advanced Himawari-8 imager AOD
with hourly resolution and 5 km horizontal resolution [14] and multi-angle implementation
of atmospheric correction (MAIAC) with 1 km horizontal resolution [15].

Aerosol type, meteorology and topography are important elements that affect the
PM2.5–AOD relationship. Observations in Beijing showed that η is smaller for scattering-
dominant coarse-mode aerosols than for absorbing-dominant fine-mode aerosols [9]. A
stronger correlation for the scattering-dominated aerosols was also found based on ob-
servations across 368 cities in China [14]. Observations in Nanjing showed that rPM-AOD
is larger for aerosols with larger Angstrom exponent [11]. Meteorological elements, such
as relative humidity (RH), planetary boundary layer height (PBLH) and wind speed, are
critical factors that affect the PM2.5–AOD relationship. The higher the RH, wind speed and
PBLH, the smaller the η [9]. Using RH corrections improves surface PM10 estimates from
satellite AOD in Beijing [16]. Including vertical correction via PBLH increases rPM-AOD in
northwestern China [17]. However, nationwide studies [9,15] suggest that correction by
RH and PBLH does not necessarily increase rPM-AOD. rPM-AOD decreases in a few regions
in different seasons. For topography, the PM2.5–AOD relationship is stronger in basin areas
and is weaker over plateaus [12,14,15].

Most current studies focus on spatiotemporal variations of the PM2.5–AOD relation-
ship in recent years, but studies on decadal trends are rare. In addition, most studies
are observation-based, and thus it is difficult to separate contributions from different fac-
tors. Due to the tough clean air policies, anthropogenic emissions of SO2 in China have
declined markedly since 2006, and NOx emissions have reduced strongly after 2011, par-
ticularly after 2013 [18]. However, in 2006–2017, biomass burning emissions showed no
statistically significant trends [19]. In addition, annual total biomass burning emissions
of NMVOCs, NOx, NH3, SO2, BC, OC and primary PM2.5 only account for 1–8% of the
total emissions [18,19]. The objective of this work is to systematically quantify the relative
contributions of anthropogenic emission control and meteorology changes to trends and
the inter-annual variations of the PM2.5–AOD relationship in China in 2006–2017. We use a
nested global 3D chemical transport model—GEOS-Chem—to simulate the PM2.5–AOD
relationship in China. We separate the contribution from anthropogenic emissions and
meteorology changes by fixing meteorology at the 2009 level and fixing anthropogenic
emissions at the 2006 level, respectively. We investigate responses of the PM2.5–AOD rela-
tionship to anthropogenic emission changes and identify major meteorological elements
that influence the inter-annual variations of the PM2.5–AOD link.

2. Materials and Methods
2.1. Observations

We used MODIS Collection 6.1 Level-3 daily mean Dark Target and Deep Blue com-
bined AOD data at 550 nm (https://modis-atmos.gsfc.nasa.gov/MOD08_M3/index.html,
accessed on 16 June 2021). Collection 6.1 modified aerosol retrieval over the land surface
when urban percentage is larger than 20% using a revised surface characterization and
improved surface modeling in elevated terrain (Collection 6.1 Change Document). On a
global scale, the expected errors are ± (0.05 + 15%) over land for Dark Target retrievals at
the 10-km spatial resolution, ± (0.03 + 21%) for arid path retrievals and ± (0.03 + 18%) for
vegetated path retrievals for Deep Blue retrievals. On regional scale, 60–83% of MODIS
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C6.1 AOD data are within range of ± (0.05 + 15%) in NCP [20] and 90% of MODIS C5 data
fall in the range of ± (0.05 + 20%) in YRD [21]. See details in reference [22].

We used surface in situ measurements of PM2.5 from the China Ministry of Ecology
and Environment network (https://www.mee.gov.cn, accessed on 16 June 2021) with 484
sites in 2013, 670 sites in 2014 and 1498 sites in 2015–2017 (Figure 1). PM2.5 concentrations
were determined by two methods: Thermo Scientific Continuous Ambient Particle Monitor
TEOM-FDMS (Waltham, MA, USA) (about 60% of the sites) and β-gauge (the remaining
40% of the sites) with quality control (National Ambient Air Quality Standards, GB3095-
2012; available at: http://english.mee.gov.cn/Resources/standards/Air_Environment/
quality_standard1/201605/t20160511_337502.shtml, accessed on 16 June 2021). PM2.5
concentrations determined by the two methods are highly correlated (r2 = 0.95), but the
concentrations measured by TEOM equipment are 15–23% lower than those measured by
β-gauge [23]. Since the measurement method used at each site was unavailable, we used
available data from all sites by the two methods, bringing uncertainties to the analysis.
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Figure 1. In situ surface PM2.5 measurement sites in 2013 (yellow circles), 2014 (red circles) and
2015–2017 (black circles) used in this study.

2.2. Model Description

We use the 3D chemical transport model, GEOS-Chem version 11.01, to simulate
surface PM2.5 and AOD in China. We use a nested model with a horizontal resolu-
tion of 0.5◦ latitude × 0.667◦ longitude over Asia and the boundary conditions were
archived from global simulations at 2◦ latitude × 2.5◦ longitude (see model grids at
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_horizontal_grids, ac-
cessed on 29 August 2022). Meteorological fields are from Modern-Era Retrospective analy-
sis for Research and Application, Version 2 (MERRA-2). We ran the model with full gaseous
chemistry and online aerosol calculations. GEOS-Chem simulates the thermodynamics of
aerosols using the ISORROPIA II package [24]. The model couples aerosol and gas-phase
chemistry through nitrate and ammonium partitioning [25], sulfur chemistry in clouds and
aerosols [26], secondary organic aerosol formation [27,28] and uptake of acidic gases by
sea salt and dust [29]. Monthly anthropogenic emissions of SO2, NOx, BC, OC, NMVOCs
and NH3 in Asia are from the multi-resolution emission inventory developed by Tsinghua

https://www.mee.gov.cn
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University (Available at: http://meicmodel.org/, accessed on 29 August 2022) [18]. We up-
dated anthropogenic emission inventories of these species in China in 2006–2017 [30]. Daily
open biomass burning emissions are from the Global Fire Emissions Database, Version 4
(Available at: https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html,
accessed on 29 August 2022) [31] with horizontal resolution of 0.25◦ latitude × 0.25◦ lon-
gitude. Dry and wet removal of aerosols follow [32] and [33], respectively. The model
simulation of AOD, surface PM2.5 and its components are extensively validated against in
situ station radiometer AOD measurements, MODIS AOD, surface in situ measurements of
PM2.5 and its components in previous studies [22,34].

2.3. Experimental Setup

We performed three experiments to quantify the contributions of anthropogenic emis-
sion control and meteorology changes to the PM2.5–AOD relationship in China. In the
BASE experiment, PM2.5 and AOD were simulated with varying anthropogenic emissions
and meteorological fields in each year from 2006 to 2017. In the FIXEMISS experiment,
anthropogenic emissions were fixed at the 2006 level, when China started to control SO2
emissions [35]. The variations in this experiment reflect the effects of meteorology changes
in 2006–2017. In the FIXMET experiment, the meteorological field was fixed at the 2009 level
in each year in 2006–2017. We selected 2009 because the annual mean PM2.5 concentration
in 2009 was the closest to the 12-year average. The variations in this experiment reflect the
effects of anthropogenic emission control.

We analyze results in three key regions in China: the NCP (35–41◦N, 110–120◦E),
the YRD (27–35◦N, 116–122◦E) and the Pearl River Delta (PRD, 22–25◦N, 110–117◦E).
See details of the regions in reference [22]. PM2.5/AOD ratio η and Pearson correla-
tion coefficient rPM-AOD were proved to be good parameters to quantify the PM2.5–AOD
relationship [6,12,13,36]. The former is a conversion factor [37] and indicates the dry mass
PM2.5 concentration per unit aerosol optical thickness. The latter indicates the strength and
direction of the linear relationship between surface dry mass PM2.5 and AOD. A previous
study showed that stronger PM2.5–AOD relationship produces better surface PM2.5 re-
trieval [12]. We archived daily mean PM2.5 concentration and AOD data from GEOS-Chem
runs in the three experiments. We estimated the daily η (η = PM2.5_daily/AOD_daily) in
each model grid first and then estimated the monthly, seasonal and annual mean in each
region. We estimated rPM-AOD using daily mean PM2.5 and AOD in each model grid in
each month, season and year and then estimated the mean value in each region.

3. Results
3.1. Observed and Simulated Long-Term Trends of PM2.5–AOD Relationship

Observations show that the ratios of η observed at the in situ sites in 2013–2017 vary
with seasons. The largest η is in winter (114–212 µg m−3) and the smallest in summer
(44–61 µg m−3, Figure 2). This is possibly explained by several reasons. First, anthropogenic
emissions in winter are 30% larger than those in summer in NCP, while the differences in
YRD and PRD are within 8%. Thus, the ratio in NCP in winter is higher than those in other
seasons and regions. Second, stable stratification in winter confined surface emissions to
the boundary layer and enhances surface PM2.5 concentration. Simulated surface PM2.5
concentration in winter is consistently 16–54% larger than those in summer in the three
regions. Third, aerosol loading in NCP in summer is 25–43% larger than that in winter.
In YRD and PRD, aerosol loading in summer is also smaller than that in winter, but the
difference is smaller than those of surface PM2.5 concentrations. Fourth, the simulated
hygroscopic factors of different species in summer are 1–45% larger than those in winter,
enhancing AOD in summer.

http://meicmodel.org/
https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html
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Figure 2. Observed (red lines) and GEOS-Chem simulated (black lines) ratio of PM2.5/AOD (η) in
NCP, YRD and PRD in 2013–2017. The bars are standard deviations.

GEOS-Chem overestimates η by 24–63% in NCP, YRD and PRD due to the overestimate
of surface PM2.5 and underestimate of AOD [22]. Observations show that annual mean
ratios of η are decreasing at rates of −2.6, −3.6 and −2.1% year−1 in NCP (p-value = 0.13),
YRD (p-value = 0.02) and PRD (p-value = 0.67) in 2013–2017, with the fastest decline in
summer (−9.1, −10.3 and −2.6% year−1) and followed by those in fall (−7.0, −5.9 and
−4.6% year−1). In 2006–2017, the simulated η show significant decreasing rates of −1.2,
−0.7 and −1.4% year−1 in NCP, YRD and PRD (p-value < 0.01), respectively. Different from
trends of AOD and surface PM2.5 [22], the difference of reduction rates of η before and
after 2013 are much smaller (Figure 3). Specifically, the simulated reduction rates of η in
2013–2017 are smaller than those in 2006–2013 by 16% in NCP, but the rates in YRD and
PRD in 2013–2017 are 11% and 100% larger than those in 2006–2013.
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purple lines), varying meteorological fields with fixed anthropogenic emissions at the 2006 level
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Observations show that rPM-AOD in 2013–2017 is decreasing in the three key regions,
but the trends are statistically insignificant (p-value > 0.76). These trends are in general
agreement with recent studies [12]. GEOS-Chem reproduces the inter-annual variations
of rPM-AOD with a bias of −33–222% (Figure 4). The model overestimates rPM-AOD for the
annual mean and in spring-fall. The overestimate is possibly because the model does
not resolve AOD from coarse particles. In contrast, the model underestimates rPM-AOD in
winter, possibly due to the overestimated isolation of the boundary layer by the model [22].
rPM-AOD shows no significant trends in the three key regions in 2006–2017, but the inter-
annual variations are substantial (Figure 5). The rPM-AOD values vary by ±27% in the
12 years in spring–fall. In winter, rPM-AOD varies between −0.47 and 0.38.
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3.2. Contributions of Anthropogenic Emission Control and Meteorology Changes to
PM2.5–AOD Relationship

The decrease of η in 2006–2017 is mainly attributed to anthropogenic emission changes
(Table 1). Specifically, meteorology changes tend to increase η in NCP and YRD, but
contribute 10% to the reduction of η in PRD in FIXMET. In addition, η in BASE correlate
stronger with η in FIXMET (0.70 < r < 0.87) than those in FIXEMISS (0.26 < r < 0.64).
The downward trends of surface PM2.5 and AOD in recent years are also attributed to
anthropogenic emission changes [38,39]. GEOS-Chem suggests that the annual mean
surface PM2.5 decreases faster than AOD by 68% in NCP, 59% in YRD and 72% in PRD in
2006–2017 in FIXMET.
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varying meteorology and varying emissions (BASE, black lines), varying anthropogenic emissions
with meteorological fields fixed at the 2009 level (FIXMET, purple lines), varying meteorological
fields with fixed anthropogenic emissions at the 2006 level (FIXEMISS, blue lines).

On a seasonal scale, the downward trends of η (BASE) are also attributed to an-
thropogenic emission reductions (Table 1). The downward trends of η in FIXMET are
statistically significant in the four seasons. Meteorology changes increase η in spring and
winter, but decrease η in summer and fall in NCP, and show limited effects on trends of η
in other regions. In FIXMET in NCP, AOD decreases at the rate of 0.8% year−1 in spring,
but surface PM2.5 shows no trends; thus, η increases. The inter-annual variations of AOD
in this region are controlled by temperature and vertical air movement at 850 hPa and
surface RH [22]. However, none of these meteorological elements showed statistically
significant trends over the 12 years. The weakening of the East Asian summer monsoon
enhances aerosol concentrations but AOD increase (0.9% year−1) faster than surface PM2.5
(0.1% year−1), producing a negative trend of η. Similar upward trends are observed for fall
(AOD: 1.4% year−1 (p-value < 0.1); surface PM2.5: 0.3% year−1). The strong enhancement of
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AOD is related to the decreased potential vorticity (−0.02 PVU year−1, p-value < 0.05) and
the increased RH at 850 hPa (0.002 year−1). In winter, AOD decreases significantly over the
12 years (−1.2% year−1, p-value < 0.01), but surface PM2.5 increases; thus, η increases. The
strong decrease of AOD is attributed to the significant increase of northerly wind speed at
850 hPa (0.15 m s−1 year−1, p-value < 0.1). The inter-annual variations of η are also strongly
affected by meteorology changes on the seasonal scale. H in BASE correlate stronger with η
in FIXEMISS than those in FIXMET in fall and winter in the three regions (Table 2).

Table 1. GEOS-Chem simulated trends of PM2.5/AOD ratios (η, µg m−3 year−1) in 2006–2017 in
NCP, YRD and PRD.

Season Experiments NCP YRD PRD

Annual
BASE −1.25 * −0.76 + −1.40 *
FIXEMISS 0.04 0.41 −0.03
FIXMET −1.39 * −1.25 * −1.16 *

Spring
BASE −0.87 # −1.48 * −2.41 *
FIXEMISS 0.75 # 0.06 −0.54
FIXMET −1.59 * −1.56 * −1.46 *

Summer
BASE −1.42 * −0.38 −2.22 *
FIXEMISS −0.70 # 0.37 −0.49
FIXMET −1.01 * −0.96 * −1.83 *

Fall
BASE −2.36 * −0.50 −0.22
FIXEMISS −1.11 + 0.41 0.18
FIXMET −1.48 * −1.49 * −0.64 *

Winter
BASE 0.39 0.23 −0.17
FIXEMISS 1.45 + 0.99 0.37
FIXMET −1.06 * −0.68 * −0.43 *

# significant at 90% level (0.05 < p < 0.1); + significant at 95% level (0.01 < p < 0.05); * significant at 99% level
(p < 0.01).

Table 2. Correlation coefficients of PM2.5/AOD (η) in the BASE experiment with those in FIXEMISS
and FIXMET.

Season Experiments NCP YRD PRD

Annual
FIXEMISS 0.42 0.26 0.64
FIXMET 0.87 0.70 0.77

Spring FIXEMISS 0.30 0.57 0.81
FIXMET 0.58 0.68 0.78

Summer
FIXEMISS 0.95 0.83 0.76
FIXMET 0.76 0.35 0.79

Fall
FIXEMISS 0.89 0.77 0.97
FIXMET 0.85 0.50 0.28

Winter
FIXEMISS 0.83 0.94 0.92
FIXMET 0.00 0.30 0.26

Meteorology changes show larger effects on inter-annual variations of rPM-AOD than
anthropogenic emission control in 2006–2017 (Figure 5). In the FIXMET experiment,
rPM-AOD increase significantly in 2006–2013 (p-value < 0.01) and decrease in 2013–2017
(p-value = 0.20 in NCP, 0.02 in YRD and PRD). In contrast, no significant trends are seen
in FIXEMISS. Combining the effects of anthropogenic emission changes and meteorology
changes in the BASE experiment, the trends of rPM-AOD are statistically insignificant, indi-
cating that meteorology changes have larger influences on rPM-AOD than anthropogenic
emission changes in 2006–2017. In addition, rPM-AOD in BASE correlates stronger to rPM-AOD
in FIXEMISS (0.73 < r < 0.95) than those in FIXMET (0.17 < r < 0.63, Table 3). Moreover, the
inter-annual variations of annual rPM-AOD caused by meteorology changes (−14%–+7%)
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are much larger than those caused by anthropogenic emission changes (−5%–+3%). On the
seasonal scale, rPM-AOD in BASE also correlate stronger to rPM-AOD in FIXEMISS than those
in FIXMET, similar to the comparison on the annual scale (Table 3).

Table 3. Correlation coefficients of rPM-AOD in the BASE experiment with those in FIXEMISS
and FIXMET.

Season Experiments NCP YRD PRD

Annual
FIXEMISS 0.73 0.95 0.96
FIXMET 0.26 0.17 0.63

Spring FIXEMISS 0.94 0.95 0.94
FIXMET −0.18 −0.04 0.69

Summer
FIXEMISS 0.82 0.96 0.92
FIXMET 0.14 0.06 0.53

Fall
FIXEMISS 0.90 0.91 0.96
FIXMET 0.15 0.21 0.28

Winter
FIXEMISS 0.99 0.95 0.96
FIXMET −0.18 0.26 0.36

3.3. Responses of PM2.5 /AOD Ratios to Anthropogenic Emission Changes (FIXMET)

AOD is determined by both aerosol loading and the hygroscopic growth factor from
the surface to the top of the atmosphere ([22], Section 2.1). GEOS-Chem shows that in
FIXMET the hygroscopic growth factors do not change over the years, and the decrease of
η in 2006–2017 is mainly due to faster decrease of PM2.5 at the surface than aloft (Figure 6).
We estimate the reduction rates of PM2.5 in 2006–2017 ((PM2.5_2017–PM2.5_2006)/PM2.5_2006)
at various heights from the surface to 500 hPa. The reduction rates of PM2.5 at 800 hPa
(500 hPa) are 7% (48%), 5% (47%) and 20% (55%) smaller than those at the surface in NCP,
YRD and PRD, respectively. The largest difference in reduction rates between the surface
and aloft is from OA and the ratio decreases with increasing altitude monotonically. In
contrast, the reduction rate of sulfate-nitrate-ammonium (SNA) increases slightly below
800 hPa in NCP and YRD (Figure 6, see model validation of PM2.5 components in [22,34]).

GEOS-Chem shows that reduction rates of OA in surface PM2.5 are slightly larger
than those of AODOA in winter (<25%), and are markedly larger (48–81%) than those of
AODOA in summer. The reason is that OA reduction rates are decreasing with increasing
height both in summer and winter (Figure 6), but at a faster rate in winter due to stable
stratification and lower PBLH. In contrast, reduction rates of PM2.5_SNA are slightly larger
than AODSNA in summer (by up to 8%), but are 1–38% smaller in winter. We find that
reduction rates of SNA are decreasing with increasing altitude in summer, but the trend
is the opposite in winter below 850 hPa. The model shows that in winter, concentration
of NO3

− is increasing at a faster rate at the surface than aloft. In addition, the ratio of
NO3

−/SNA decreases quickly with increasing height (e.g., NCP in winter: surface: 57%;
750 hPa: 18%). Thus, the resulting total reduction rates of SNA increase with increasing
height in winter. The unfavorable chemical processes that buffer NO3

− reduction in winter
have been widely observed and simulated [40,41]. Very few studies have investigated the
vertical distribution of PM2.5 components in China. The authors in [42] showed that NO2 is
the most important factor that determines the vertical profile of PM2.5 in Shanghai in winter.
This, in general, explains the important role of NO3

− on the vertical distribution of PM2.5.
Observations of vertical profiles of PM2.5 components in China are needed in the future to
investigate the response of PM2.5 components at different altitudes to emission changes.
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(BC: black lines; OC: brown lines; SNA: blue lines) relative to the surface in 2006–2017 for annual
mean (a–c) and for summer and winter (d–f) in NCP, YRD and PRD.
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3.4. Meteorological Elements That Influence the Correlation of PM2.5 and AOD (FIXEMISS)

We estimated the correlation coefficient of rPM-AOD (correlation coefficient of daily
mean PM2.5 and AOD in each month in 2006–2017) and monthly mean meteorological
elements in each season. The meteorological elements are from MERRA-2 reanalysis
data and include temperature (T), an east-west wind component (U), a north-south wind
component (V), vertical air movement (O), relative humidity (RH), potential vorticity (PV)
at the surface, 850 hPa and 500 hPa, and tropopause pressure (TROPPT), pressure at the
surface (PS) and sea level pressure (SLP).

Meteorological elements that have strong correlation with rPM-AOD vary with regions
and seasons (Table 4). T at the surface, 850 hPa and 500 hPa are strongly correlated with
rPM-AOD with correlation coefficients of 0.72–0.88 in NCP and YRD in spring. Tsurface is also
positively related to rPM-AOD in YRD and PRD in fall, and to rPM-AOD in PRD in winter.
Higher T is usually related to stronger vertical mixing, thus a larger correlation of the
surface PM2.5 and column AOD.

Table 4. Meteorological elements that have the strongest correlation with rPM-AOD in NCP, YRD
and PRD.

Season
NCP YRD PRD

Positive Negative Positive Negative Positive Negative

Spring
T500hPa (0.88) TROPPT (−0.88) T500hPa (0.80) U500hPa (−0.65) T500hPa (0.80) U500hPa (−0.82)
Tsurface (0.84) PS (−0.77) Tsurface (0.74) PS (−0.62) dU850–500hPa (0.78) PS (−0.76)
T850hPa (0.82) SLP (−0.67) T850hPa (0.72) SLP (−0.61) RH500hPa (0.77) O500hPa (−0.46)

Summer
dVsurface–850hPa (0.45) PS (−0.53) V500hPa (0.54) U500hPa (−0.38) RH850hPa (0.53) dT850–500hPa (−0.49)
U850hPa (0.43) SLP (−0.46) V850hPa (0.42) dVsurface–850hPa (−0.33) RH500hPa (0.42) O850hPa (−0.44)
dT850–500hPa (0.41) V500hPa (−0.38) TROPPT (0.38) PV850hPa (−0.31) PV850hPa (0.36) SLP (−0.41)

Fall
dVsurface–850hPa (0.44) PV850hPa (−0.41) Tsurface (0.46) Usurface (−0.40) Tsurface (0.39) U500hPa (−0.42)
dT850–500hPa (0.37) RH500hPa (−0.25) T850hPa (0.43) U500hPa (−0.38) dU850–500hPa (0.38) PS (−0.34)
PBLH (0.33) SLP (−0.24) T500hPa (0.39) TROPPT (−0.37) dTsurface–850hPa (0.38) SLP (−0.34)

Winter
O850hPa (0.67) RH850hPa (−0.54) O850hPa (0.37) RH500hPa (−0.35) Tsurface (0.54) PV850hPa (−0.39)
Usurface (0.60) PREC (−0.51) O500hPa (0.25) PBLH (−0.33) dT850–500hPa (0.46) Osurface (−0.37)
dVsurface–850hPa (0.60) V850hPa (−0.51) PS (0.24) TROPPT (−0.30) T850hPa (0.45) U500hPa (−0.34)

Wind in zonal and meridional directions show different correlations with rPM-AOD
in the three regions (Table 4). Zonal wind is positively related to rPM-AOD in NCP but
negatively related to rPM-AOD in YRD and PRD. Meridional wind is positively related
to rPM-AOD in YRD and negatively related to rPM-AOD in NCP. The positive or negative
correlation coefficients are attributed to the wind direction. For example, U500hPa is positive
(from west to east) in the three regions and is consistently negatively related to rPM-AOD in
YRD and PRD. Faster wind at 500 hPa blows aerosols away and decreases the correlation
of surface PM2.5 and AOD in the column. In contrast, U850hPa in summer and Usurface in
winter in NCP are negative (from east to west) in 1/3 of the 36 months and are positively
related to rPM-AOD in NCP. We find that O are positively related to rPM-AOD in NCP and
YRD in winter, but negatively related to rPM-AOD in PRD in summer and winter. In the
former two regions, the vertical air movement is upward, thus larger O means stronger
mixing and larger rPM-AOD. In PRD, the vertical movement is downward, thus larger O
means stronger isolation between the surface and aloft and smaller rPM-AOD.

PS and SLP are negatively related to rPM-AOD in the three regions in spring, summer
and fall (Table 4). Air flows up and together in a low-pressure system, enhancing vertical
mixing. Lower PS means stronger mixing and larger rPM-AOD. dT, dV and dU are indi-
cators of atmospheric stability, thus, they are mostly positively related to rPM-AOD in the
three regions.

We investigated the correlation of rPM-AOD and RH and PBLH in every season. In
spring, RH500hPa is positively related to rPM-AOD in PRD (r = 0.77), but shows weaker
relation in NCP and YRD. RHsurface and RH850hPa have relatively weaker relations with
rPM-AOD in the three regions. In summer, RH has relatively weaker correlation with rPM-AOD
in NCP and YRD than in PRD. This is in general agreement with observations, which
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showed that RH correction increased the rPM-AOD in the three regions with the largest
percentage increase in PRD [15]. PBLH is positively related to rPM-AOD in NCP (r = 0.61), but
is relatively weakly related to rPM-AOD in other seasons and other regions (−0.33 < r < 0.33).
This is in general agreement with a recent study, which showed that PBLH-PM correlations
are stronger in polluted regions than in clean regions [43]. PBLH correction deteriorates
the correlation in YRD and PRD in spring [15].

4. Discussion

We use model experiments to separate contributions from anthropogenic emission
control and meteorology changes to the PM2.5–AOD relationship. We find that η decreased
significantly in 2006–2017, due mainly to anthropogenic emission control. With further
reduction of anthropogenic emissions in the future, the PM2.5–AOD relation is predicted to
become weaker. Previous observation-based studies also detected weakening trends of the
PM2.5–AOD relationship in the last five years [12]. However, it was difficult to investigate
reasons for the trends based only on observations.

GEOS-Chem simulation showed that rPM-AOD showed no statistically significant
trends but large inter-annual variations. Meteorological elements are critical in explain-
ing the inter-annual variations of rPM-AOD, such as T, U, V, O, PS, atmospheric instability,
RH and PBLH. Among these elements, RH and PBLH were well discussed in previous
observation-based studies. Using correction of RH and PBLH improves the correlation of
monthly PM2.5 and AOD in Beijing in 2011–2015 from 0.63 to 0.76 [9]. The authors in [17]
suggested correcting surface PM2.5 retrieval using PBLH in northwest China. RH tends to
weaken the rPM-AOD regardless of geographical location [13]. Corrected by RH and PBLH,
rPM-AOD increased in most regions but decreased in a few of the 368 cities in China [15].
rPM-AOD decreases with increasing surface wind speed [15]. Other meteorological elements
were rarely discussed. However, this study shows that T, PS and atmospheric instability are
also important to the variations of rPM-AOD, and should be considered in future research.

Despite the strong relation between surface PM2.5 and AOD, they show a lot of differ-
ences. First, surface PM2.5 and AOD show completely different seasonality [22,36]. Second,
surface PM2.5 and AOD respond differently to emission changes. With the anthropogenic
emission changes in 2006–2017, fractional reduction rates of surface PM2.5 are larger than
AOD. Third, influences of meteorology changes on the inter-annual variation of AOD are
larger than that of surface PM2.5 [22]. Fourth, despite steady improvement of data quality,
uncertainties of AOD values obtained by space-borne remote sensors are so large that
they can hardly be used to detect the long-term variations [44]. Even for a global mean
quantity, the discrepancies among different products exceed the signal of inter-annual
variability [44]. On regional scales, the uncertainties are much larger and more complex.
MODIS Terra and Aqua show opposite trends (Terra: −0.009 yr−1; Aqua: +0.0012 yr−1) in
China in 2001–2011, and both are statistically significant at 95% confidence level [45]. Lastly,
studies showed that weaker PM-AOD relationship deteriorate PM2.5 retrieval. The authors
in [12] showed that adjusted R2 of PM2.5 retrieval decreased from 0.87 in 2013 to 0.69 in
2017 owing to the weakening of the PM-AOD relationship. With the strong reduction
of surface PM2.5 in recent years and in the future, the PM2.5–AOD relationship becomes
weaker and the retrieval of PM2.5 becomes worse [12]. The predictability of surface PM2.5
using space-borne AOD needs further validation.

5. Conclusions

We studied the PM2.5–AOD relationship in NCP, YRD and PRD in China using a
nested 3D chemical transport model—GEOS-Chem. We separated the contributions from
anthropogenic emission control and meteorology changes by fixing meteorology at the
2009 level and fixing anthropogenic emissions at the 2006 level, respectively. We found that
η was decreasing in 2006–2017, but rPM-AOD showed no statistically significant trends. The
decrease of η was determined to be caused by anthropogenic emission changes. The vertical
distribution of reduction rates varies with seasons and PM2.5 components. In summer, all
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components reduce slower with increasing height, while in winter the reduction rate of
SNA increases first and then decreases. The overall effect of the different trends of different
components is that PM2.5 concentration decreases slower at higher altitude than at the
surface. The inter-annual variations of rPM-AOD were mainly determined by meteorology
changes. We found that major meteorological elements that have strong correlation with
rPM-AOD vary with regions and seasons. T was positively related to rPM-AOD in the three
regions and was particularly important in spring and fall. Horizontal wind speed and
vertical air movement show a strong correlation with rPM-AOD. PS is mostly negatively
related to rPM-AOD, while atmospheric instability is positively related to rPM-AOD. RH is
negatively related to rPM-AOD in NCP and YRD in fall and winter, but is positively related
to rPM-AOD in PRD in spring and summer. PBLH is positively related to NCP in fall and
negatively related to YRD in winter and PRD in spring. This study suggests using other
meteorological elements mentioned above when analyzing the PM2.5–AOD relationship or
retrieving surface PM2.5 using satellite AOD. In addition, as the PM2.5–AOD relationship
weakens with decreasing anthropogenic emissions, validity of remote-sensing surface
PM2.5 retrieval should be regularly evaluated.
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