5 research outputs found

    Rostrum abnormalities in the endangered Indian Ocean humpback dolphin (Sousa plumbea) in South Africa

    Get PDF
    SUPPORTING INFORMATION : Appendix 1. Photographs of the abnormal rostrum conditions characterized in this study with corresponding ID number (if available), locality, time, and credits.Morphological abnormalities in wild animals can be indicators of the underlying health of a population and may be determined through routine photographic surveys. Here, we assess unusual rostrum conditions in Indian Ocean humpback dolphins (Sousa plumbea) inhabiting South African coastal waters to understand the rate of prevalence of abnormal rostrums and formulate hypotheses on potential causes. Photographic data were collated from systematic boat surveys and opportunistic sightings, obtained between April 1998 and March 2021 in various regions along the South African coast. Overall, 31 unique individuals were found with abnormal rostrum conditions, varying from slight misalignments to severe wounds and/or aberrant morphologies. In most cases, injuries were likely caused by natural events during the animal's life history such as interactions with sharks and/or reef-associated hunting strategies. Mark–recapture data indicated that individuals had survived with these injuries for up to 10 years. This study reports the highest incidence of rostrum abnormalities in the species. As numbers reflect only those that have survived their injuries, they are considered a minimum estimate. A better understanding of the cause(s) of these injuries is important given the endangered status of this species.National Research Foundation; The Rufford Foundation; The Society for Marine Mammalogy.https://onlinelibrary.wiley.com/journal/17494877hj2023Mammal Research InstituteZoology and Entomolog

    HydroMoth: Testing a prototype low‐cost acoustic recorder for aquatic environments

    Get PDF
    Passive acoustic monitoring (PAM) involves recording the sounds of animals and environments for research and conservation. PAM is used in a range of contexts across terrestrial, marine and freshwater environments. However, financial constraints limit applications within aquatic environments; these costs include the high cost of submersible acoustic recorders. We quantify this financial constraint using a systematic literature review of all ecoacoustic studies published in 2020, demonstrating that commercially available autonomous underwater recording units are, on average, five times more expensive than their terrestrial equivalents. This pattern is more extreme at the low end of the price range; the cheapest available aquatic autonomous units are over 40 times more expensive than their terrestrial counterparts. Following this, we test a prototype low-cost, low-specification aquatic recorder called the ‘HydroMoth’: this device is a modified version of a widely used terrestrial recorder (AudioMoth), altered to include a waterproof case and customisable gain settings suitable for a range of aquatic applications. We test the performance of the HydroMoth in both aquaria and field conditions, recording artificial and natural sounds, and comparing outputs with identical recordings taken with commercially available hydrophones. Although the signal-to-noise ratio and the recording quality of HydroMoths are lower than commercially available hydrophones, the recordings with HydroMoths still allow for the identification of different fish and marine mammal species, as well as the calculation of ecoacoustic indices for ecosystem monitoring. Finally, we outline the potential applications of low-cost, low-specification underwater sound recorders for bioacoustic studies, discuss their likely limitations, and present important considerations of which users should be aware. Several performance limitations and a lack of professional technical support mean that low-cost devices cannot meet the requirements of all PAM applications. Despite these limitations, however, HydroMoth facilitates underwater recording at a fraction of the price of existing hydrophones, creating exciting potential for diverse involvement in aquatic bioacoustics worldwide

    Science alone won’t do it! South Africa’s endangered humpback dolphins Sousa plumbea face complex conservation challenges

    Get PDF
    The Indian Ocean humpback dolphin (Sousa plumbea) is “endangered” with likely less than 500 animals remaining in South African waters. Established in 2016, the SouSA Consortium is a formalised network of scientists and conservationists to combine knowledge and research efforts, and make coordinated decisions with the aim of conserving the species. The first collaborative project collated available photoidentification data in an attempt to refine a national population estimate and investigate movements between research sites. This work was able to identify 250 uniquely marked individuals, with the population divided into the south-coast (Agulhas bioregion) and east-coast (Natal bioregion) populations. Environmental factors almost certainly play a role in the declining numbers of the species in South African waters. However, individual threats and solutions are challenging to identify as the South African marine environment is undergoing significant natural and anthropogenic changes with major shifts in the distribution and numbers of some prey, competitor and predator species. Therefore, we believe that a continued investigation of potential contributing factors and their interaction will take too long, inevitably resulting in another case of documenting extinction. With this in mind, we present the results of a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis in an effort to help us identify the next steps to take toward the conservation of humpback dolphins in South African waters. We unanimously conclude that no single cause for the rapid decline of humpback dolphins Frontiers in in South African waters can be identified, and that the cumulative effects of multiple stressors, which are difficult to pinpoint and mitigate, are impacting population numbers. While highlighting the need for continued research, we suggest a shift toward more action-focused conservation efforts, the first concrete steps being the development of a Conservation Management Plan with input from other stakeholders.Gesellschaft zur Rettung der Delphine, the Western Indian Ocean Marine Science Association (WIOMSA), a University of Stellenbosch Sub Committee B Postdoctoral Fellowship and the Marine and Coastal grant of the National Research Foundation (NRF).https://www.frontiersin.org/journals/marine-science#am2022Mammal Research Institut
    corecore