13 research outputs found

    Ligand-Independent Activation of the EGFR by Lipid Raft Disruption

    Get PDF
    Normal and immortalized keratinocytes demonstrate large aggregates of lipid rafts, detectable by membrane staining with fluorescently tagged cholera toxin (CTx). As lipid rafts are known to regulate the function of many surface receptors, we wished to investigate their impact on the EGFR in HaCaT cells. When rafts were disrupted by cholesterol sequestration with methyl-β-cyclodextrin (MβCD) or filipin III, EGFR rearranged into approximately micrometer large clusters outside the CTxbright raft aggregates. These clusters contained high concentrations of activated, tyrosine-phosphorylated EGFR exhibiting greatly reduced mobility in the fluorescence recovery after photobleaching experiments. EGFR activation led to the stimulation of extracellular signal-regulated kinase 2, the phosphorylated form of which translocated to the nucleus and stimulated growth of the MβCD-treated cells. Experiments with the specific antagonistic antibody proved that the activation of EGFR by lipid raft disruption occurred without the participation of the ligand. We hypothesize that cholesterol depletion leads to the release of EGFR from the damaged rafts into the small confined areas of the membrane, where the receptor molecules are likely to be spontaneously activated owing to a very high density and/or separation from the inhibitory factors remaining in the surrounding portions of the membrane

    Side-effects to the use of laptop computers: erythema ab igne

    Get PDF
    The use of laptop computers is increasing, and many children and young adults spend hours with their laptops on their laps daily. We report a case with erythema ab igne on the thigh of a 17-year-old girl, induced by use of laptop computers four to five hours daily for nine months

    Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermial keratinocytes

    Get PDF
    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Raft disruption was achieved in normal human keratinocytes and precancerous (HaCaT) or transformed (A431) keratinocytes by cholesterol extraction or inactivation with methyl-β-cyclodextrin, filipin III, or 5-cholestene-5-β-ol. Lipid raft disruption did not affect PI3K binding to its main target, the epidermal growth factor receptor, nor its ability to convert phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate but impaired Akt phosphorylation at the regulatory sites Thr308 and Ser473. Diminished Akt activity resulted in deactivation of mammalian target of rapamycin, activation of FoxO3a, and increased sensitivity to apoptosis stimuli. Lipid raft disruption abrogated the binding of Akt and the major Akt kinase, phosphatidylinositol-dependent kinase 1, to the membrane by pleckstrin-homology domains. Thus, the integrity of lipid rafts is required for the activity of Akt and cell survival and may serve as a potential pharmacological target in the treatment of epidermal cancers

    Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    Get PDF
    AbstractTernary lipid compositions in model membranes segregate into large-scale liquid-ordered (Lo) and liquid-disordered (Ld) phases. Here, we show μm-sized lipid domain separation leading to vesicle formation in unperturbed human HaCaT keratinocytes. Budding vesicles in the apical portion of the plasma membrane were predominantly labelled with Ld markers 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate and weakly stained by Lo marker fluorescein-labeled cholera toxin B subunit which labels ganglioside GM1 enriched plasma membrane rafts. Cholesterol depletion with methyl-β-cyclodextrin enhanced DiI vesiculation, GM1/DiI domain separation and was accompanied by a detachment of the subcortical cytoskeleton from the plasma membrane. Based on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total ‘Lo/Ld’ boundary line tension arising from the coalescence of smaller Ld-like domains makes it energetically favourable for Ld-like domains to bend from flat μm-sized surfaces to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events

    DOORS syndrome and a recurrent truncating ATP6V1B2 variant

    Get PDF
    Purpose: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. Methods: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. Results: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. Conclusion: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions
    corecore