94 research outputs found

    Accurate SAXS Profile Computation and its Assessment by Contrast Variation Experiments

    Get PDF
    AbstractA major challenge in structural biology is to characterize structures of proteins and their assemblies in solution. At low resolution, such a characterization may be achieved by small angle x-ray scattering (SAXS). Because SAXS analyses often require comparing profiles calculated from many atomic models against those determined by experiment, rapid and accurate profile computation from molecular structures is needed. We developed fast open-source x-ray scattering (FoXS) for profile computation. To match the experimental profile within the experimental noise, FoXS explicitly computes all interatomic distances and implicitly models the first hydration layer of the molecule. For assessing the accuracy of the modeled hydration layer, we performed contrast variation experiments for glucose isomerase and lysozyme, and found that FoXS can accurately represent density changes of this layer. The hydration layer model was also compared with a SAXS profile calculated for the explicit water molecules in the high-resolution structures of glucose isomerase and lysozyme. We tested FoXS on eleven protein, one DNA, and two RNA structures, revealing superior accuracy and speed versus CRYSOL, AquaSAXS, the Zernike polynomials-based method, and Fast-SAXS-pro. In addition, we demonstrated a significant correlation of the SAXS score with the accuracy of a structural model. Moreover, FoXS utility for analyzing heterogeneous samples was demonstrated for intrinsically flexible XLF-XRCC4 filaments and Ligase III-DNA complex. FoXS is extensively used as a standalone web server as a component of integrative structure determination by programs IMP, Chimera, and BILBOMD, as well as in other applications that require rapidly and accurately calculated SAXS profiles

    PatchDock and SymmDock: servers for rigid and symmetric docking

    Get PDF
    Here, we describe two freely available web servers for molecular docking. The PatchDock method performs structure prediction of protein–protein and protein–small molecule complexes. The SymmDock method predicts the structure of a homomultimer with cyclic symmetry given the structure of the monomeric unit. The inputs to the servers are either protein PDB codes or uploaded protein structures. The services are available at . The methods behind the servers are very efficient, allowing large-scale docking experiments

    Mindboggling morphometry of human brains

    Get PDF
    Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available

    ASPASIA: A toolkit for evaluating the effects of biological interventions on SBML model behavior

    Get PDF
    <div><p>A calibrated computational model reflects behaviours that are expected or observed in a complex system, providing a baseline upon which sensitivity analysis techniques can be used to analyse pathways that may impact model responses. However, calibration of a model where a behaviour depends on an intervention introduced after a defined time point is difficult, as model responses may be dependent on the conditions at the time the intervention is applied. We present ASPASIA (Automated Simulation Parameter Alteration and SensItivity Analysis), a cross-platform, open-source Java toolkit that addresses a key deficiency in software tools for understanding the impact an intervention has on system behaviour for models specified in Systems Biology Markup Language (SBML). ASPASIA can generate and modify models using SBML solver output as an initial parameter set, allowing interventions to be applied once a steady state has been reached. Additionally, multiple SBML models can be generated where a subset of parameter values are perturbed using local and global sensitivity analysis techniques, revealing the model’s sensitivity to the intervention. To illustrate the capabilities of ASPASIA, we demonstrate how this tool has generated novel hypotheses regarding the mechanisms by which Th17-cell plasticity may be controlled <i>in vivo</i>. By using ASPASIA in conjunction with an SBML model of Th17-cell polarisation, we predict that promotion of the Th1-associated transcription factor T-bet, rather than inhibition of the Th17-associated transcription factor ROR<i>γ</i>t, is sufficient to drive switching of Th17 cells towards an IFN-<i>γ</i>-producing phenotype. Our approach can be applied to all SBML-encoded models to predict the effect that intervention strategies have on system behaviour. ASPASIA, released under the Artistic License (2.0), can be downloaded from <a href="http://www.york.ac.uk/ycil/software" target="_blank">http://www.york.ac.uk/ycil/software</a>.</p></div
    • …
    corecore