18 research outputs found

    Co adaptation of LiCl tolerant Solanum tuberosum L. callus cultures to NaCl stress

    Get PDF
    In this research, co-adaptation of the Calli of Solanum tuberosum, raised from petioles, to the presence of lithium (LiCl) and sodium chloride (NaCl) was studied. The cultures were adapted with LiCl in the absence of an osmotic stress and the response of adapted and unadapted calli to salinity was investigated. Undifferentiated callus growth was induced in S. tuberosum by the addition of 2 mg/l 2,4 dichlorophenoxy acetic acid (2,4-D), 0.25 mg/l kinetin to Murashige and Skoog medium. Subcultures were subjected to an incremental increase in LiCl to obtain adapted lines. Adapted and undapted calli were grown with LiCl and NaCl and the tissue content of Na+, K+, Ca2+, Mg2+ and proline levels were determined. Either 40 mM LiCl or 100 mM NaCl inhibited unadapted calli by more than 50%, while adapted calli grew normally under these conditions. The adapted calli exhibited a lower K+ content with or without salt and showed a lower accumulation of Na+ at 100 mM NaCl. The tissue K+ and Mg2+ contents decreased and their proline levels increased with salinity. A co-adaptation phenomenon is induced by LiCl that involves a regulation of K+ and Na+ contents and an accumulation of proline, which also brings about tolerance to osmotic effects of salt. This data is highly useful for devising breeding and molecular modification strategies for stress tolerance.Key words: Cations, proline, osmotic adjustment, salt tolerance, Solanum tuberosum

    High Performance Antenna System in MIMO Configuration for 5G Wireless Communications Over Sub-6 GHz Spectrum

    Get PDF
    This paper presents a high-performance multiple input and multiple output (MIMO) antenna comprising 2 x 2 configuration of radiating elements that is designed for sub-6 GHz applications. The proposed MIMO antenna employs four identical radiating elements. High isolation between the radiating elements and therefore reduced mutual coupling is achieved by spatially arranging the radiating elements in an orthogonal configuration. Also, a novel frequency selective surface (FSS) was employed to increase the gain of the MIMO antenna over a wide bandwidth from 3 to 6 GHz. This was achieved by locating the FSS above the antenna at a certain height. The FSS essentially enhanced the antenna's directivity, reduced back lobe radiation and mutual coupling. The antenna was fabricated on a standard Rogers RT Duroid 5880 dielectric substrate with a 0.8 mm thickness. The overall dimension of the MIMO antenna is 50 x 50 x 12.5 mm(3) and it operates from 3.8 to 6 GHz, which corresponds to a fractional bandwidth of 41%. The proposed MIMO antenna has a measured peak gain of 4.8 dBi and inter radiation element isolation >20 dB. Its envelope correlation coefficient is <0.1 and diversity gain >9.9 (dB). These characteristics make the proposed MIMO antenna system suitable for 5G communication systems

    Review of Internet of Things and Design of New UHF RFID Folded Dipole with Double U Slot Tag

    No full text
    The Internet of Things (IoT) is a promising technology that makes the interaction between things, such as sensors, medical objects, smartphone, food, and humans and enables the smart objects to be part of the Internet environment. The emerging IoT paradigm opens the doors to new infrastructures, networks, and smart objects to be part of IoT development and working together for enhancing the quality life of users. This paper first discusses the state-of-the art of IoT, its basic points like connectivity, their components, architecture, and applications that are necessary to know about the IoT. In addition, the paper presents an overview of RFID technology, which is considered as an essential element in IoT technologies, also an example of a novel component of RFID system is developed to make a connection between objects for tracking and processing

    Synthesis, Anti-Bacterial and Molecular Docking Studies of Arylated Butyl 2-Bromoisonicotinate Against Clinical Isolates of ESBL-Producing Escherichia coli ST405 and Methicillin-Resistant Staphylococcus aureus

    No full text
    Shazia Naheed,1 Irum Umar Din,1 Muhammad Usman Qamar,2 Nasir Rasool,1 Matloob Ahmad,1 Muhammad Bilal,1 Aqsa Khalid,3 Gulraiz Ahmad,1 Sami A Al-Hussain,4 Magdi EA Zaki4 1Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan; 2Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan; 3School of Interdisciplinary Engineering & Science (SINES), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan; 4Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyad, 11623, Saudi ArabiaCorrespondence: Nasir Rasool; Magdi E A Zaki, Email [email protected]; [email protected]: Global public health concerns include the emergence and spread of methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase Escherichia coli (ESBL-E. coli). These pathogens cause infections that are difficult to treat, which can have fatal outcomes and require lengthy hospital stays. As a result, we created butyl 2-bromoisonicotinate and tested its antibacterial effectiveness against the ESBL-E. coli ST 405 and MRSA pathogens. Natural product discovery is complemented by synthetic compound synthesis because of the latter’s potential for superior characteristics, target specificity, scalability, intellectual advantages, and chemical diversity. Because of this, the potential for discovering new medicinal compounds is increased, and the constraints placed on natural sources are overcome. Natural items are tough to obtain since they are hard to isolate and synthesize. Therefore, modern science is actively searching for small molecules as therapeutic agents by applying sustainable techniques that can be commercialized.Methods: Two patients’ blood samples were taken, and the BACTEC/Alert system was used to process them. On blood and MacConkey agar, the positive samples were subcultured and incubated aerobically at 37 °C. Using the VITEK 2 compact system, the isolates were subjected to isolate identification and MIC. MLST of the ESBL-E. coli was performed by PCR. Additionally, Fischer esterification was used to create butyl 2-bromoisonicotinate in excellent yields. A commercially available palladium catalyst was then used to arylate the compound, resulting in medium to good yields of arylated butyl 2-bromoisonicotinates. Using the agar well diffusion assay and the micro-broth dilution method, we assessed the in-vitro activities of the synthesized molecules (3, 5a-h) against clinically isolated ESBL-E. coli ST405, and MRSA. A molecular operating environment was used to carry out in silico validation of the synthesized compounds’ binding to the active site and to evaluate the stability of their molecular interactions with the target E. coli 2Y2T protein.Results: MRSA and ESBL-producing E. coli were identified as the two clinical isolates. While MRSA was also resistant to beta-lactam drugs and least resistant to vancomycin, ESBL-producing E. coli belonged to ST405 and was resistant to cephalosporins and sensitive to carbapenems. Good yields of the desired compounds were produced by our effective and economical synthesis. By using a micro-broth dilution assay, the Molecules (3, 5a, and 5d) were most effective against both resistant strains. The Molecules (3, 5a, 5b, and 5d) also displayed good binding energies.Conclusion: The butyl 2-bromoisonicotinate displayed antibacterial efficacy against ESBL-producing E. coli ST405 and MRSA strains. After the in-vivo trial, this substance might offer an alternative therapeutic option.Keywords: ESBL, MRSA, MLST, Fischer esterification, Suzuki-Miyaura, docking studie
    corecore