17 research outputs found
Neural reactivation in parietal cortex enhances memory for episodically linked information.
Remembering is a complex process that involves recalling specific details, such as who you were with when you celebrated your last birthday, as well as contextual information, such as the place where you celebrated. It is well established that the act of remembering enhances long-term retention of the retrieved information, but the neural and cognitive mechanisms that drive memory enhancement are not yet understood. One possibility is that the process of remembering results in reactivation of the broader episodic context. Consistent with this idea, in two experiments, we found that multiple retrieval attempts enhanced long-term retention of both the retrieved object and the nontarget object that shared scene context, compared with a restudy control. Using representational similarity analysis of fMRI data in experiment 2, we found that retrieval resulted in greater neural reactivation of both the target objects and contextually linked objects compared with restudy. Furthermore, this reactivation occurred in a network of medial and lateral parietal lobe regions that have been linked to episodic recollection. The results demonstrate that retrieving a memory can enhance retention of information that is linked in the broader event context and the hippocampus and a posterior medial network of parietal cortical areas (also known as the Default Network) play complementary roles in supporting the reactivation of episodically linked information during retrieval
eetemp_public
Relationships between individual differences in dual process and electrophysiological signatures of familiarity and recollection during retrieva
Recommended from our members
Proximity to boundaries reveals spatial context representation in human hippocampal CA1
Recollection of real-world events is often accompanied by a sense of being in the place where the event transpired. Convergent evidence suggests the hippocampus plays a key role in supporting episodic memory by associating information with the time and place it was originally encountered. This representation is reinstated during memory retrieval. However, little is known about the roles of different subfields of the human hippocampus in this process. Research in humans and non-human animal models has suggested that spatial environmental boundaries have a powerful influence on spatial and episodic memory, as well as hippocampal representations of contexts and events. Here, we used high-resolution fMRI to investigate how boundaries influence hippocampal activity patterns during the recollection of objects encountered in different spatial contexts. During the encoding phase, participants viewed objects once in a naturalistic virtual reality task in which they passively explored two rooms in one of two houses. Following the encoding phase, participants were scanned while they recollected items in the absence of any spatial contextual information. Our behavioral results demonstrated that spatial context memory was enhanced for objects encountered near a boundary. Activity patterns in CA1 carried information about the spatial context associated with each of these boundary items. Exploratory analyses revealed that recollection performance was correlated with the fidelity of retrieved spatial context representations in anterior parahippocampal cortex and subiculum. Our results highlight the privileged role of boundaries in CA1 and suggest more generally a close relationship between memory for spatial contexts and representations in the hippocampus and parahippocampal region