523 research outputs found

    Ein neues, unkompliziert auszuführendes Verfahren zur Bestimmung kleiner Konzentrationen an Wasser in organischen Lösungsmitteln

    Get PDF
    A new procedure for the determination of water (even in trace amounts) in organic solvents is described. The solvatochromism of the pyridiniumphenol betaine, E T30, determined by a simple UV-absorption measurement, together with a two-parameter equation, permits an exact determination. The procedure is rapid and is, therefore, an alternative to the Karl-Fischer titration

    A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents

    Get PDF
    A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents

    Photoreflectance analysis of a GaInP/GaInAs/Ge multijunction solar cell

    Get PDF
    We have analyzed the photoreflectance spectra of a GaInP/GaInAs/Ge triple junction solar cell. The spectra reveal signatures from the window layer and middle and top subcells included in the stack. Additional contributions from the multilayer buffer introduced between the mismatched bottom and middle cells have been detected. Franz–Keldysh oscillations (FKOs) dominate the spectra above the fundamental bandgaps of the GaInP and GaInAs absorbers. From the FKO analysis, we have estimated the dominant electric fields within each subcell. In light of these results, photoreflectance is proposed as a useful diagnostic tool for quality assessment of multijunction structures prior to completion of the device or at earlier stages during its processing

    Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    Get PDF
    An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations

    Ein neues, unkompliziertes Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische

    Get PDF
    Ein neues Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische mit Hilfe solvatochromer Farbstoffe wird beschrieben. Die Analyse erfolgt durch einfache UV/VIS-Absorptionsmessung und ist unter Verwendung einer Zwei-Parameter-Gleichung ein exakter Schnelltest

    On the benchmarking of multi-junction photoelectrochemical fuel generating devices

    Get PDF
    We discuss benchmarking considerations for multi-junction solar fuel absorbers and investigate the effects of spectral shaping by catalyst nanoparticles on design criteria.MMM acknowledges funding from the fellowship programme of the German National Academy of Sciences Leopoldina, grant LPDS 2015-09

    The 2020 photovoltaic technologies roadmap

    Get PDF
    Over the past decade, the global cumulative installed photovoltaic (PV) capacity has grown exponentially, reaching 591 GW in 2019. Rapid progress was driven in large part by improvements in solar cell and module efficiencies, reduction in manufacturing costs and the realization of levelized costs of electricity that are now generally less than other energy sources and approaching similar costs with storage included. Given this success, it is a particularly fitting time to assess the state of the photovoltaics field and the technology milestones that must be achieved to maximize future impact and forward momentum. This roadmap outlines the critical areas of development in all of the major PV conversion technologies, advances needed to enable terawatt-scale PV installation, and cross-cutting topics on reliability, characterization, and applications. Each perspective provides a status update, summarizes the limiting immediate and long-term technical challenges and highlights breakthroughs that are needed to address them. In total, this roadmap is intended to guide researchers, funding agencies and industry in identifying the areas of development that will have the most impact on PV technology in the upcoming years

    Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    Get PDF
    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is similar to 800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to similar to 1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.open0
    corecore