47 research outputs found

    Discovering New Physics in the Decays of Black Holes

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second, thus qualifying as a BH factory. With the Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may produce new, undiscovered particles with masses ~100 GeV. The probability of producing a heavy particle in the decay depends on its mass only weakly, in contrast with the exponentially suppressed direct production. Furthemore, BH decays with at least one prompt charged lepton or photon correspond to the final states with low background. Using the Higgs boson as an example, we show that it may be found at the LHC on the first day of its operation, even with incomplete detectors.Comment: 4 pages, 3 figure

    Quantum Gravity Effects in Black Holes at the LHC

    Get PDF
    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 11 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new analysis of final products, final version accepted for publication in J. Phys.

    Black Holes at Future Colliders and Beyond: a Topical Review

    Full text link
    One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.Comment: 31 pages, 10 figures To appear in the Journal of Physics

    Black Hole Chromosphere at the LHC

    Full text link
    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys. Rev. D. Additional details provided on the effect of the chromosphere in cosmic ray shower

    Large extra dimension effects in Higgs boson production at linear colliders and Higgs factories

    Full text link
    In the framework of quantum gravity propagating in large extra dimensions, the effects of virtual Kaluza-Klein graviton and graviscalar interference with Higgs boson production amplitudes are computed at linear colliders and Higgs factories. The interference of the almost-continuous spectrum of the KK gravitons with the standard model resonant amplitude is finite and predictable in terms of the fundamental D-dimensional Plank scale M_D and the number of extra dimensions \delta. We find that, for M_D ~ 1 TeV and \delta=2, effects of the order of a few percent could be detected for heavy Higgs bosons (m_H>500 GeV) in Higgs production both via WW fusion in e^+e^- colliders and at \mu^+\mu^- Higgs-boson factories.Comment: 16 pages, 2 figures ; a few comments and references added ; version to appear in JHE

    Minimum length effects in black hole physics

    Full text link
    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    The Beyond the Standard Model Working Group: Summary Report

    Get PDF
    Report of the "Beyond the Standard Model" working group for the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001. It consists of 18 separate parts: 1. Preface; 2. Theoretical Discussion; 3. Numerical Calculation of the mSUGRA and Higgs Spectrum; 4. Theoretical Uncertainties in Sparticle Mass Predictions; 5. High Mass Supersymmetry with High Energy Hadron Colliders; 6. SUSY with Heavy Scalars at LHC; 7. Inclusive Study of MSSM in CMS; 8. Establishing a No-Lose Theorem for NMSSM Higgs Boson Discovery at the LHC; 9. Effects of Supersymmetric Phases on Higgs Production in Association with Squark Pairs in the Minimal Supersymmetric Standard Model; 10. Study of the Lepton Flavour Violating Decays of Charged Fermions in SUSY GUTs; 11. Interactions of the Goldstino Supermultiplet with Standard Model Fields; 12. Attempts at Explaining the NuTeV Observation of Di-Muon Events; 13. Kaluza-Klein States of the Standard Model Gauge Bosons: Constraints From High Energy Experiments; 14. Kaluza-Klein Excitations of Gauge Bosons in the ATLAS Detector; 15. Search for the Randall Sundrum Radion Using the ATLAS Detector; 16. Radion Mixing Effects on the Properties of the Standard Model Higgs Boson; 17. Probing Universal Extra Dimensions at Present and Future Colliders; 18. Black Hole Production at Future Colliders.Report of the Beyond the Standard Model working group for the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001. It consists of 18 separate parts: 1. Preface: 2. Theoretical Discussion: 3. Numerical Calculation of the mSUGRA and Higgs Spectrum: 4. Theoretical Uncertainties in Sparticle Mass Predictions: 5. High Mass Supersymmetry with High Energy Hadron Colliders: 6. SUSY with Heavy Scalars at LHC: 7. Inclusive Study of MSSM in CMS: 8. Establishing a No-Lose Theorem for NMSSM Higgs Boson Discovery at the LHC: 9. Effects of Supersymmetric Phases on Higgs Production in Association with Squark Pairs in the Minimal Supersymmetric Standard Model: 10. Study of the Lepton Flavour Violating Decays of Charged Fermions in SUSY GUTs: 11. Interactions of the Goldstino Supermultiplet with Standard Model Fields: 12. Attempts at Explaining the NuTeV Observation of Di-Muon Events: 13. Kaluza-Klein States of the Standard Model Gauge Bosons: Constraints From High Energy Experiments: 14. Kaluza-Klein Excitations of Gauge Bosons in the ATLAS Detector: 15. Search for the Randall Sundrum Radion Using the ATLAS Detector: 16. Radion Mixing Effects on the Properties of the Standard Model Higgs Boson: 17. Probing Universal Extra Dimensions at Present and Future Colliders: 18. Black Hole Production at Future Colliders

    Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS

    Full text link
    We study the formation of marginally trapped surfaces in the head-on collision of two ultrarelativistic charges in (A)dS(A)dS space-time. The metric of ultrarelativistic charged particles in (A)dS(A)dS is obtained by boosting Reissner-Nordstr\"om (A)dS(A)dS space-time to the speed of light. We show that formation of trapped surfaces on the past light cone is only possible when charge is below certain critical - situation similar to the collision of two ultrarelativistic charges in Minkowski space-time. This critical value depends on the energy of colliding particles and the value of a cosmological constant. There is richer structure of critical domains in dSdS case. In this case already for chargeless particles there is a critical value of the cosmological constant only below which trapped surfaces formation is possible. Appearance of arbitrary small nonzero charge significantly changes the physical picture. Critical effect which has been observed in the neutral case does not take place more. If the value of the charge is not very large solution to the equation on trapped surface exists for any values of cosmological radius and energy density of shock waves. Increasing of the charge leads to decrease of the trapped surface area, and at some critical point the formation of trapped surfaces of the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte

    A Quasi-Model-Independent Search for New Physics at Large Transverse Momentum

    Get PDF
    We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of an ensemble of hypothetical similar experimental runs would have produced a final state with a candidate signal more interesting than the most interesting observed in these data.Comment: 28 pages, 17 figures. Submitted to Physical Review

    Black Hole Remnants at the LHC

    Full text link
    We investigate possible signatures of black hole events at the LHC in the hypothesis that such objects will not evaporate completely, but leave a stable remnant. For the purpose of defining a reference scenario, we have employed the publicly available Monte Carlo generator CHARYBDIS2, in which the remnant's behavior is mostly determined by kinematic constraints and conservation of some quantum numbers, such as the baryon charge. Our findings show that electrically neutral remnants are highly favored and a significantly larger amount of missing transverse momentum is to be expected with respect to the case of complete decay.Comment: LaTeX, 13 pages, 2 tables, 5 figures, references added and typos corrected. To appear in EPJ
    corecore