16 research outputs found

    Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space

    Full text link
    Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of dam-aged biological molecules might serve to seed new life (necropanspermia).Comment: Accepted for publication in Space Science Review

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    Characterisation of an AGATA symmetric prototype detector

    No full text
    International audienceThe Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at the University of Liverpool. A 137Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented

    Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    No full text
    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. [1]] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at the University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector

    Probing the maximally deformed light rare-earth region around the drip-line nucleus 130Sm

    No full text
    International audienceThe neutron deficient rare-earth nuclei of the A~130 region are of particular interest since highly deformed prolate ground states are expected. Indeed these nuclei are predicted to show maximal ground-state deformations of β2 ~ 0.40 (axis ratio of 3:2), comparable to the deformation deduced for superdeformed cerium isotopes at high spin. A fusion–evaporation experiment was performed with radioactive ion beams at GANIL in October 2004 which had the goal to reach very proton-rich exotic nuclei located near the proton drip-line. A radioactive 76Kr beam, delivered by the SPIRAL facility, was used to bombard a thin 58Ni target. Emitted γ-rays were detected by the EXOGAM γ-ray spectrometer which was, for the first time, coupled with both the DIAMANT charged-particle array and the VAMOS spectrometer
    corecore