298 research outputs found

    The GOA database in 2009—an integrated Gene Ontology Annotation resource

    Get PDF
    The Gene Ontology Annotation (GOA) project at the EBI (http://www.ebi.ac.uk/goa) provides high-quality electronic and manual associations (annotations) of Gene Ontology (GO) terms to UniProt Knowledgebase (UniProtKB) entries. Annotations created by the project are collated with annotations from external databases to provide an extensive, publicly available GO annotation resource. Currently covering over 160 000 taxa, with greater than 32 million annotations, GOA remains the largest and most comprehensive open-source contributor to the GO Consortium (GOC) project. Over the last five years, the group has augmented the number and coverage of their electronic pipelines and a number of new manual annotation projects and collaborations now further enhance this resource. A range of files facilitate the download of annotations for particular species, and GO term information and associated annotations can also be viewed and downloaded from the newly developed GOA QuickGO tool (http://www.ebi.ac.uk/QuickGO), which allows users to precisely tailor their annotation set

    Genetic variation in adiponectin (ADIPOQ) and the type 1 receptor (ADIPOR1), obesity and prostate cancer in African Americans

    Get PDF
    BackgroundAdiponectin is a protein derived from adipose tissue suspected to play an important role in prostate carcinogenesis. Variants in the adiponectin gene (ADIPOQ) and its type I receptor (ADIPOR1) have been recently linked to risk of both breast and colorectal cancer. Therefore, we set out to examine the relationship between polymorphisms in these genes, obesity and prostate cancer in study of African American men.MethodsTen single nucleotide polymorphisms (SNPs) in ADIPOQ and ADIPOR1 were genotyped in DNA samples from 131 African American prostate cancer cases and 344 controls participating in the Flint Men's Health Study. Logistic regression was then used to estimate their association with prostate cancer and obesity.ResultsWhile no significant associations were detected between any of the tested SNPs and prostate cancer, the rs1501299 SNP in ADIPOQ was significantly associated with body mass (p=0.03).ConclusionsGenetic variation in ADIPOQ and ADIPOR1 did not predict risk of prostate cancer in this study of African American men. However, the rs1501299 SNP in ADIPOQ was associated with obesity. Further investigation is warranted to determine if racial differences exist in the influence of the adiponectin pathway on prostate cancer risk

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Representing kidney development using the gene ontology.

    Get PDF
    Gene Ontology (GO) provides dynamic controlled vocabularies to aid in the description of the functional biological attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). Here we describe collaboration between the renal biomedical research community and the GO Consortium to improve the quality and quantity of GO terms describing renal development. In the associated annotation activity, the new and revised terms were associated with gene products involved in renal development and function. This project resulted in a total of 522 GO terms being added to the ontology and the creation of approximately 9,600 kidney-related GO term associations to 940 UniProt Knowledgebase (UniProtKB) entries, covering 66 taxonomic groups. We demonstrate the impact of these improvements on the interpretation of GO term analyses performed on genes differentially expressed in kidney glomeruli affected by diabetic nephropathy. In summary, we have produced a resource that can be utilized in the interpretation of data from small- and large-scale experiments investigating molecular mechanisms of kidney function and development and thereby help towards alleviating renal disease

    A method for increasing expressivity of Gene Ontology annotations using a compositional approach.

    Get PDF
    BACKGROUND: The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. RESULTS: The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector-target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. CONCLUSIONS: The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism's gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction

    IntAct—open source resource for molecular interaction data

    Get PDF
    IntAct is an open source database and software suite for modeling, storing and analyzing molecular interaction data. The data available in the database originates entirely from published literature and is manually annotated by expert biologists to a high level of detail, including experimental methods, conditions and interacting domains. The database features over 126 000 binary interactions extracted from over 2100 scientific publications and makes extensive use of controlled vocabularies. The web site provides tools allowing users to search, visualize and download data from the repository. IntAct supports and encourages local installations as well as direct data submission and curation collaborations. IntAct source code and data are freely available from

    Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation.</p> <p>Results</p> <p>We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology.</p> <p>Conclusions</p> <p>Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at <url>https://sourceforge.net/tracker/?atid=605890&group_id=36855</url>.</p

    The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.</p> <p>Methods</p> <p>In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.</p> <p>Results</p> <p>In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.</p> <p>Conclusions</p> <p>Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.</p
    corecore