83 research outputs found

    A systematic re-examination of processing of MHCI-bound antigenic peptide precursors by ER aminopeptidase 1

    Get PDF
    Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in pre-formed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08 and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic and computational analyses suggested that this 12mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from pre-formed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1-MHCI-peptide complex. Similarly, no interactions between ERAP1 and purified peptide loading complex (PLC) were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution, along with the dynamic nature of peptide binding to MHCI, are sufficient to explain ERAP1 processing of antigenic peptide precursors

    The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380.

    Get PDF
    Angiotensin I-converting enzyme (ACE) is central to the regulation of the renin-angiotensin system and is a key therapeutic target for combating hypertension and related cardiovascular diseases. Currently available drugs bind both active sites of its two homologous domains, although it is now understood that these domains function differently in vivo. The recently solved crystal structures of both domains (N and C) open the door to new domain-specific inhibitor design, taking advantage of the differences between these two large active sites. Here we present the first crystal structure at a resolution of 2.25 Å of testis ACE (identical to the C domain of somatic ACE) with the highly C-domain-specific phosphinic inhibitor, RXPA380. Testis ACE retains the same conformation as seen in previously determined inhibitor complexes, but the RXPA380 central backbone conformation is more similar to that seen for the inhibitor captopril than enalaprilat. The RXPA380 molecule occupies more subsites of the testis ACE active site than the previously determined inhibitors and possesses bulky moieties that extend into the S2′ and S2 subsites. Thus the high affinity of RXPA380 for the testis ACE/somatic ACE C domain is explained by the interaction of these bulky moieties with residues unique to these domains, specifically Phe 391, Val 379, and Val 380, that are not found in the N domain. The characterization of the extended active site and the binding of a potent C-domain-selective inhibitor provide the first structural data for the design of truly domain-specific pharmacophores

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    Late-Stage Diversification of Phosphinic Dehydroalanine Pseudopeptides Based on a Giese-Type Radical C-Alkylation Strategy

    No full text
    A straightforward, late-stage diversification strategy for the installation of side chains on readily accessible unsaturated phosphinopeptidic scaffolds based on a Giese-type addition of alkyl radicals has been investigated. Among different alternatives, the preferred methodology is operationally simple as it can be carried out in an open flask with no need for protection of acidic moieties. Direct application to the synthesis of SPPS-compatible building blocks or to longer peptides is also reported
    corecore