4 research outputs found

    A Multitaper-Random Demodulator Model for Narrowband Compressive Spectral Estimation

    Get PDF
    The random demodulator (RD) is a compressive sensing (CS) system for acquiring and recovering bandlimited sparse signals, which are approximated by multi-tones. Signal recovery employs the discrete Fourier transform based periodogram, though due to bias and variance constraints, it is an inconsistent spectral estimator. This paper presents a Multitaper RD (MT-RD) architecture for compressive spectrum estimation, which exploits the inherent advantage of the MT spectral estimation method from the spectral leakage perspective. Experimental results for sparse, narrowband signals corroborate that the MT-RD model enhances sparsity so affording superior CS performance compared with the original RD system in terms of both lower power spectrum leakage and improved input noise robustness

    »A French Music of France«

    Get PDF
    Abstract – One of the major challenges in cognitive radio (CR) networks is the need to sample signals as efficiently as possible without incurring the loss of vital information. Compressive Sensing (CS) is a new sampling paradigm which provides a theoretical framework for sub-sampling signals which are characterized as being sparse in the frequency domain. The random demodulator (RD) is a CS-based architecture which has been employed to acquire frequency sparse, bandlimited signals which typify the signals which often occur in many CR-related applications. This paper investigates the impact of precolouring upon CS performance by combining the RD with an autoregressive (AR) filter model to enhance compressive spectral estimation. Quantitative results with quadrature phased shift keying (QPSK) modulated multiband signals, corroborate that adopting a precolouring strategy both reduces the spectral leakage in the power spectrum, and concomitantly improves the overall signal-to-noise ratio (SNR) performance of the compressive spectrum estimator
    corecore