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 Abstract – One of the major challenges in cognitive radio 
(CR) networks is the need to sample signals as efficiently as 
possible without incurring the loss of vital information. 
Compressive Sensing (CS) is a new sampling paradigm which 
provides a theoretical framework for sub-sampling signals which 
are characterized as being sparse in the frequency domain. The 
random demodulator (RD) is a CS-based architecture which has 
been employed to acquire frequency sparse, bandlimited signals 
which typify the signals which often occur in many CR-related 
applications. This paper investigates the impact of precolouring 
upon CS performance by combining the RD with an 
autoregressive (AR) filter model to enhance compressive spectral 
estimation. Quantitative results with quadrature phased shift 
keying (QPSK) modulated multiband signals, corroborate that 
adopting a precolouring strategy both reduces the spectral 
leakage in the power spectrum, and concomitantly improves the 
overall signal-to-noise ratio (SNR) performance of the 
compressive spectrum estimator.  
 
Key words: Cognitive Radio, Compressive Sensing, Random 
Demodulator, Autoregressive Model, Precolouring, Signal to Noise 
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I. INTRODUCTION 
 

       Cognitive radio (CR) is broadly defined as a netwotk 
which is able to sense its spectral environment over a wide 
frequency band and opportunistically provide wireless links to 
best meet the users’ requirements, without causing harmful 
interference [1] and [2]. A key CR design objective is the 
development of suitable spectral detection and estimation 
techniques able to efficiently sense and identify the available 
spectrum. One of the major challenges of conventional 
spectrum estimation methods [3] is the high sampling rates  
involved. This has given impetus to the emergence of  
compressive sensing (CS) techniques, which are a new 
sampling paradigm [4,5,6] for data acquisition. Furthermore, 
the stringent timing requirements for rapidly sensing 
dynamically changing spectra, means only a small number of 
measurements are acquired from the received signal, which 
may be insufficient for reliable signal reconstruction. 
 As delineated in both [1] and [7], only a small portion of 
bands in the radio frequency (RF) spectrum are heavily used, 
while others are only either partially or rarely occupied. As a 

consequence, in open-spectrum networks, the wireless signals 
are typically sparse in the frequency domain, that is, the 
number of significant frequency components is often much 
smaller than the band limit allows. More specifically, in many 
RF applications, signals with a large bandwidth may only 
have a small ‘information rate’ [8]. (CS) affords an effective 
means for recovering sparse signals, by requiring the 
availability of only a relatively small number of non-adaptive 
measurements to reconstruct the signals which are 
compressible by for instance, the Fourier or Wavelet 
transforms. The randomizing of these measurements plays an 
integral role in underpinning CS theory, since it leads to very 
effective sensing mechanisms, as will be explained further in 
Section II-A. 
       One particular CS technique is the analog-to-information 
converter (AIC), realization known as the random 
demodulator (RD) [9–11]. The RD structure is able to 
efficiently recover discrete, multitone signals which are 
characterized by being bandlimited, periodic and sparse. In 
[12], it is claimed that by windowing the input signal to the 
RD, broader signal classes, such as non-harmonic tones and 
multiband signals can be approximated by periodic multitone 
signals, though for multiband signals, which are typical of the 
types of signals which occur in many CR applications, the 
number of frequencies required for the approximation is 
linearly dependent on the bandwidth. It is important there are 
sufficient numbers of frequencies within each band to avoid 
recovery errors, though this has a commensurate impact upon 
the computational load of both the sampling and recovery 
stages [13]. One other limitation of the RD structure 
highlighted in [13] is the maximal frequency that is able to be 
recovered is only around 500 kHz. 
     CR inherently seeks to exploit unoccupied portions of the 
spectrum [2] and since multiband signals can be approximated 
by periodic multitone signals, the RD can be considered as 
undertaking spectrum sensing in certain scenarios [12]. The 
RD has previously been used for the spectrum sensing of 
sparse bandlimited signals [14,15,16], with spectrum 
estimation accomplished by identifying the sub-carriers of the 
occupied bands. It has not been applied to the recovery of the 
power spectrum density (PSD) of a signal and this provided 
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the motivation to investigate modifying the basic RD 
architecture to achieve this objective for CR-related signals.  
      This paper presents a novel CS-based technique which 
employs the RD to recover the PSD of frequency sparse 
multiband signals which are characterised by having either 
one or more continually occupied bands, while concomitantly 
occupying a relatively small portion of the available spectrum. 
The input signal is firstly precoloured using an autoregressive 
(AR) model instead of windowing, with the RD then applied, 
to increase the spectral dynamic range and emphasize strong 
frequency components. Precolouring has the effect of 
enhancing signal sparsity by sharpening dominant frequencies 
while attenuating those weaker spectral components which lie 
outside the bands of interest. This augments signal sparsity in 
the frequency domain and facilitates better PSD recovery. It 
needs to be stressed however, that the design aim is not to 
exactly recover the signal PSD, but to efficiently identify 
occupied spectral bands, which is the key objective in CR 
systems. 
 To evaluate this CS technique, quadrature phased shift 
keying (QPSK) test signals were analysed as these are 
proposed in the IEEE 802.22 standards for CR networks [17], 
[18].The results testify the effectiveness of applying 
precolouring to improve the performance of the proposed 
compressive spectrum estimator, both in terms of spectral 
leakage and signal to noise ratio (SNR). Furthermore, 
precolouring enhances the robustness of the proposed  
spectrum estimator to both input noise and in being able to 
successfully identify occupied spectral bands when the signal 
is under-sampled as low as 5% of the Nyquist rate. 
        The remainder of the paper is organized as follows. 
Section II presents a brief overview of both CS theory and the 
basic RD architecture, while Section III describes the concept 
of precolouring and the AR model. A results analysis is 
presented in Section IV, with some concluding comments 
being provided in Section V. 
 

II. COMPRESSIVE SENSING AND THE RANDOM 
DEMODULATOR 

 
A. Compressive Sensing Background 
 
     CS is a signal processing technique which acquires and 
accurately reconstructs signals without upholding the basic 
tenet of the Nyquist sampling theorem [4]. It solves an 
underdetermined set of linear equations, with more unknowns 
than equations for which an infinite number of possible 
solutions exist. To resolve this problem, additional constraints 
are imposed upon the system, with one such constraint being 
sparsity in a particular domain.  A signal is defined as sparse, 
if it contains many coefficients either close or equal to zero 
when represented in some domain [4], such as time or 
frequency. Without loss of generality, in this paper it is 
assumed the domain in which sparsity occurs is the frequency 
domain or basis and the corresponding basis matrix is the 
normalised discrete Fourier transform (DFT) matrix.  
 Compressed sensing takes a small set of linear, non-
adaptive measurements using a matrix basis Φ which is 

largely incoherent with the basis in which the signal is known 
to be sparse, which is assumed to be Ψ. Incoherence between 
Φ and Ψ means that if the signal of interest is sparsely 
represented in the Ψ domain, then it has a dense 
representation in the Φ domain [4] and vice versa. 
 Hence, if a discrete-time signal vector x of length N that 
is K-sparse in Ψ with dimensions NxN, then for the signal to 
be represented in the Ψ domain by the vector α, the following 
must hold: 
 

x=Ψα                        (1) 
 

 Since the measurements are taken on a basis Φ which is 
incoherent with Ψ, if the measurements are represented by a 
vector y of length M<<N, then the following is valid: 
 

y = Φx                        (2) 
 
 Combining (1) and (2) gives: 
 

y = Φx= ΦΨα = Vα     (3) 
 
where V= ΦΨ an M xN matrix. 

As (3) is an underdetermined linear system of equations, 
there are an infinite number of possible vectors α. CS theory 
states that due to the signal sparsity in the Ψ domain and the 
incoherence between bases Φ and Ψ, (3) can be solved and α 
recovered by l1 -norm minimization with high probability[4], 
[7], [8]: 
 

min ||α||1    s.t.  y = ΦΨα = Vα    (4) 
 

This equation can be solved using linear programming 
techniques [19]. 
      Any random matrix having a Gaussian, Bernoulli, 
Rademacher or any other sub-Gaussian distribution, will by 
definition be incoherent with any fixed basis Ψ [4], [20]. It is 
this fundamental precept which is exploited by the RD, as it 
uses a random matrix to sense the input signal by acquiring 
measurements y = Φx. Reconstruction is achieved by solving 
(4) where as alluded, above the fixed basis Ψ is the DFT 
matrix. The RD architecture will be described in the next 
section.  
 
B. The Random Demodulator 
 
     The basic RD structure is shown in Figure 1 and has 
three constituent components: demodulation, filtering and 
uniform sampling [12], [21]. The input signal is modulated by 
a square pulse train of random values {±1} generated by a 
pseudorandom number (PN) sequence. This is called the 
chipping sequence pc(t) which must alternate between values 
at least as fast as the Nyquist frequency of the input signal. 
The demodulation smears the energy of the signal tones across 
the entire spectrum, giving each a unique spectral signature 
that can be discerned by the second stage which is a low-pass 
filter implemented as an integrator. The final stage is an 



analogue-to-digital converter (ADC) which is clocked at a 
sampling rate of M<N. As the RD directly acquires 
compressive measurements without firstly having to sample 
the continuous signal x(t), this is equivalent to a system which 
samples x(t) at  
                               

 
 
Figure  1. Random Demodulator Block Diagram 
 
the Nyquist rate to yield a discrete-time vector x, before then 
applying Φ to obtain the measurements y = Φx [21]. The 
measurement process is the dot product of x with the random 
sequence pc(t) for each sequential block of N/M coefficients. 
Φ is a M x N matrix and containing N/M randomly generated 
±1 values per row, so for example, with N=9 and M=3, Φ will 
be: 
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      The output y(n) from the RD can be considered as a linear 
transformation of the discrete vector α. This transformation is 
expressed as V=ΦΨ with the signals being sparse in the 
frequency domain.    
 

III. PRECOLOURING 
 
     As highlighted in Section II-A, constraints must be 
assumed for the signals of interest for the underdetermined set 
of linear equations to be solved. In this paper, the key 
constraint enforced is frequency sparsity, though one of the 
key motivations for precolouring is to reduce both the leakage 
of dominant spectral components and increase the dynamic 
range of the spectrum. This has the benefit of making the 
signal spectrum sharper, so enhancing signal sparsity by 
eliminating the weaker spectral components which lie outside 
the bands of interest.  
 Signal colouring is accomplished using an AR model of 
order p [22,23]. It is important to stress the rationale for 
choosing an AR filter is not spectral estimation per se [22,23], 
but instead to partially colouring the input signal to reduce 
spectral leakage and increase the dynamic range, thereby 
performing better intermediate CS spectrum estimation.This 
paper, adopts the same idea as in [22,23], but applies AR filter 
for signal precolouring instead of prewhitening. The influence 

of the precolouring filter is subsequently removed by inverse 
filtering of the intermediate spectrum estimate.       
      The output of a pth order AR filter is given by: 
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where ακ  are the AR filter coefficients which are optimally 
estimated using the modified covariance method [24] and the 
intermediate spectrum Sy(f) of y(n) is derived using 
established spectral estimation techniques [17], such as the 
classic Periodogram and Correlogram estimators. The RD is 
applied for the ensuing spectral estimation and signal 
recovery, before the spectrum Sx(f) is estimated from Sy(f) by 
inverse filtering as follows:  
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 The reason for the lower spectral leakage when an AR 
filter is used is due to the properties of an AR spectral 
estimator [24]. The AR power spectrum Sx(f) is the Fourier 
equivalent of the corresponding autocorrelation sequence. 
Since the AR order is p, for the Correlogram-based spectrum 
estimator, autocorrelation coefficients having lags greater than 
p are zero. This is not the case for the AR spectrum estimator 
where a nonzero extrapolation generates the unavailable lags 
as there is no windowing of the autocorrelation sequence as 
with the classic spectral estimators. The corollary is AR-based 
PSD does not exhibit the sidelobe phenomena and the 
resultant deleterious effects of spectral leakage, as in the 
classical  spectral estimators. 
           

IV. SIMULATION RESULTS 
      
      To evaluate the performance of the new RD-based CS 
system architecture shown in Figure 2, experiments were 
undertaken upon a MATLAB-based platform. Two QPSK 
modulated random binary sequences of duration 0.3sec,  
having a bit-rate of 215bps together with two carrier 
frequencies at 1kHz and 2.5kHz respectively were used as the 
test inputs. These carrier frequencies take cognizance of the 
maximal frequency recovery capability of the RD model 
highlighted in Section I. The sampling frequency was chosen 
1.67 times greater than the  Nyquist rate which corresponds to 
a signal length of 2048 samples. The CS performance was  
then analysed at sub-sampled rates of 68%, 34%, 17%, 8.5% 
and 4.25% of the Nyquist rate which corresponds to 1024, 
512, 256, 128 and 64 samples respectively. As the input x(n) 
is precoloured, the input to the RD model is the intermediate 
signal y(n) in (5). 
 It is assumed additive white Gaussian (AWG) noise 
has been added to x(n), so that input SNR was 8.1db as  
prescribed in the proposed IEEE 802.22 standards for CR 
[17],[18]. 
  



 
 
 

 
Figure 2. Compressive Sensing Block Diagram with Precolouring  

 
   
 A 4th order AR model was empirically chosen for these 
experiments. This represented a design a compromise, since 
higher-order AR filters not only increase the processing 
overheads, but also the spectral leakage. Additionally, lower 
AR filter order meant that no stability problems related to the 
inverse filter could be encountered in the experiments.  
 It is important to emphasize that from a CR perspective, 
the aim is to recover the signal PSD in such a way that the 
occupied bands are identified, and not the reconstruction of 
the original signal.  
 The precolouring stage does not have to be integrated into 
the CS structure of Figure 2. It could equally for instance, be 
implemented by the primary user in a CR network. This 
would avoid the requirement for a high-speed analog to digital 
converter to be implemented within the AR filter structure, 
which would negate the benefit derived by using the lower-
sampling rate of the RD. 
  For the specific test signals there are two occupied bands 
having a bandwidth of 215Hz at 1kHz and 2.5kHz 
respectively. To analyze the effect of precolouring in the 
proposed RD-based CS system, the signal energy in the bands 
of interest is measured at various sampling frequencies below 
the Nyquist rate. The corresponding results are shown in 
Figure 3, where the percentage of the total signal energy 
content within the bands of interest is termed the PSD spectral 
concentration. The corresponding spectral leakage for the 
bands of interest is then the difference from the ideal PSD 
spectral concentration (100%).      
  The results reveal that when precolouring is applied 
across the range of sub-sampling rates, the average spectral 
concentration improvement achieved is approximately 48% 
better than when it is not applied, i.e. the case of the classic 
Periodogram solution. As the highlighted example in Figure 3 
shows, the spectral leakage is lower than ≈10% of the total 
signal energy in the precolouring case, even when the 
sampling frequency falls to 20% of the original Nyquist rate 
compared with more than 35% of the signal energy when no 
precolouring is employed. Overall, the spectral leakage across 
the range of sub-sampled rates provides an average 
improvement in the PSD spectral concentration of 47.8% 
when the proposed CS-model is applied.    
 Figure 4 displays the corresponding SNR performance of 
the proposed system (Figure 2). The SNR is given by:  
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where P is the signal PSD when it is either sampled at or 
above the Nyquist rate, and αx is the PSD of the under-
sampled CS signal (see Figure 2).  The results confirm the 

superior SNR performance when precolouring is applied, with 
for instance a higher SNR of 12.3db at 70% of the Nyquist 
sampling rate and despite the more rapid roll-off, the system 
SNR is still 7.5db better at 40% of the Nyquist rate compared 
with when no precolouring is applied, to underscore the 
superior SNR behaviour of the system when precolouring is 
applied. Note, for the highly under-sampled scenario of <5% 
of the Nyquist rate, the SNR graphs converge, though the 
sampling rate is now too low to pragmatically collect a 
sufficient number of samples.  
 

 
Figure 3. The effect of precolouring on the PSD spectral concentration                         

 
Figures 5 and 6 respectively plot the recovered PSD both  
with and without precolouring at sampling rates 68% and 
4.25% of the Nyquist rate. The spectral leakage is evidently 
less pronounced when precolouring is applied, particularly at 
the lower rate, where it is still possible for the occupied bands 
to be identified. In contrast, when precolouring is not applied, 
the spectral leakage is more pronounced and at the lower 
sampling rate the occupied bands are now unable to be 
identified. Finally, Figures 7(a) and 7(b) analyse the 
performance of the      proposed RD-based CS structure at 
different AWG noise levels. The input SNR levels were 
defined as in the IEEE 802.22 standards for cognitive radio 
networks [17], [18]. Figure 7(a) reveals that the spectral 
leakage is always < 20% in the case of precolouring, whereas 
it remains steadily above 25% for the no precolouring case. 
Figure 7(b) also demonstrates that precolouring consistently 
provides improved SNR performance in the RD structure, 
with the system SNR when precolouring is applied being at 
least a factor of 2 higher compared with the no precolouring  
scenario. Moreover, it is evident from these results that system 
SNR increases significantly at lower AWG noise levels, in 
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marked contrast to the non-precolouring results, where no 
discernible improvement is observed.  

 

 
 

Figure 4. The effect of precolouring on SNR 
 
 

 
(a) 

 
                                                (b) 

Figure 5. The recovered normalised PSD (W/Hz)  at a sampling 
frequency of the 68% Nyquist with (a) no precolouring and (b) AR 

filter precolouring  
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(b) 

Figure 6. Recovered normalised PSD (W/Hz) at sampling rates 4.25% 
Nyquist with (a) no precolouring, (b) AR filter precolouring  
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(b) 

Figure 7. PSD Spectral Concentration for the (a) SNR (b) behaviour for 
variable levels of AWG noise to the input signal 
 
 
 
 



                      V. CONCLUSION 
 
       This paper has presented a novel compressive spectrum 
estimation model for sparse multiband signals which is 
particularly applicable in cognitive radio (CR) applications. 
Using a combination of a random demodulator (RD) 
architecture and autoregressive precolouring filter, input 
signals are sub-Nyquist sampled and their sharpened power 
spectral density (PSD) estimated and recovered by a l1-norm 
minimization algorithm and inverse filter. Experimental 
results for quadrature-phased-shift-keying (QPSK) modulated 
multiband signals have conclusively shown that at different 
sub-sampling rates and input noise levels, the proposed 
compressive sensing (CS) spectrum estimation structure 
consistently and robustly reduced PSD spectral leakage, while 
concomitantly providing superior signal-to-noise ratio 
performance. Future development of this model will focus 
upon extending the CS architecture to handle alternative and 
higher-order modulation signal types, especially PSK and 
QAM. It will also seek to analyze the sensitivity of the 
proposed compressive spectrum estimation model to the 
choice of AR filter order p and the comparative behaviour and 
performance of alternative CS techniques including the 
Compressive Multiplexor and the Modulated Wideband 
Converter. 
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