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Abstract—The random demodulator (RD) is a compressive
sensing (CS) system for acquiring and recovering bandlim-
ited sparse signals, which are approximated by multi-tones.
Signal recovery employs the discrete Fourier transform based
periodogram, though due to bias and variance constraints, it
is an inconsistent spectral estimator. This paper presents a
Multitaper RD (MT-RD) architecture for compressive spectrum
estimation, which exploits the inherent advantage of the MT
spectral estimation method from the spectral leakage perspective.
Experimental results for sparse, narrowband signals corroborate
that the MT-RD model enhances sparsity so affording superior
CS performance compared with the original RD system in terms
of both lower power spectrum leakage and improved input noise
robustness.

Index Terms—compressive sensing, random demodulator, Mul-
titaper, Slepian sequences, eigenspectra

I. INTRODUCTION

In cognitive radio (CR) networks, one of the key tasks is
to identify the presence of spectrum holes by using spectrum
sensing [1], which is extremely challenging due to the very
high sampling rates involved [2]. Signals in wireless networks
are characteristically sparse in the frequency domain because
of spectrum underutilization [3], and this has given impetus
to compressive sensing (CS) techniques [4], [5] which can
efficiently sense either sparse or compressible signals by
sampling them at sub-Nyquist rates.

One specific CS technique is the random demodulator (RD)
[6] which has been proven to be effective for signals cate-
gorised by being bandlimited, periodic and frequency sparse
and so as a consequence, are able to be approximated by
a finite tone model [7]. Furthermore, if a multiband signal
has a small total active bandwidth [8], then it too can be
approximated by tones so enabling the RD to be applied in
CR spectrum sensing applications.

The RD performs signal recovery of frequency sparse
signals by using as its sparsity basis, the discrete Fourier trans-
form (DFT) based periodogram spectrum estimation method
[7]. The finite length of real signals however, causes sidelobe
leakage which leads to a biased spectral estimate. Moreover,
the periodogram has inherent variance limitations because it
does not decrease as the signal length increases [8], [9], so it

not a consistent spectrum estimator. In contrast, the Multitaper
(MT) spectral estimation technique uses Slepian sequences
[1], [3], [8], [10] to afford a propitious trade-off between
spectral bias, variance and resolution, exhibiting maximal
energy concentration within a given bandwidth, centred about
a particular frequency. For these reasons it has emerged as a
viable sensing technique for CR applications, with the added
attraction being its suitability for multiband signals, since by
its nature, it assumes signals have energy concentrated within
specific frequency bands. It needs to be emphasised the MT
method only addresses spectral leakage due to the periodogram
and not energy emanating from the tone grid as a consequence
of tone-model mismatch [11]. From a CR perspective, it is
also important to stress the aim is to recover a signals power
spectral density (PSD) in order to identify occupied bands
rather than the reconstruction of the original signal.

This paper investigates seamlessly integrating the MT spec-
trum estimator into the RD model for enhanced CS perfor-
mance, particularly for frequency sparse, narrowband signals,
such as textitamplitude modulated (AM) and chirps, which
are widely encountered in telecommunications applications,
radar, and geophysics [7], [11]. For these signals, the pro-
posed MT-RD architecture consistently provides superior CS
performance in comparison with the original RD in terms of
both spectral leakage and robustness to input signal to noise
ratio (SNR). This superior CS performance is ascribed to the
enhanced signal sparsity the inclusion of the MT estimator
gives the RD model due to the maximal energy concentration
within a given bandwidth and ensuing sidelobe suppression.
For completeness, the performance of the MT-RD architecture
is also examined for higher-order modulated multiband signals
like quadrature phase shift keying (QPSK), which are defined
in current CR network standards [12]–[14].

The remainder of the paper is organized as follows. Section
2 presents a synopsis of RD-related and other CS designs and
implementations, while Section 3 details the role of MT within
the MT-RD model. A critical results discussion is provided in
Section 4, with some concluding observations being made in
Section 5.



II. PREVIOUS WORK

Since its introduction, various enhancements to the original
RD architecture [6], [7] have been proposed which generally
involve either modifying the underlying RD structure or ap-
plying different spectrum estimation techniques to overcome
the innate drawbacks of the periodogram. These enhancements
however, tend to come at the cost of either increased system
complexity [2], [15] or the requirement to have a priori
knowledge about the input signal [16], [17]. Alternative RD-
based designs including the compressive multiplexer (CM)
[18] and polyphase RD (PRD) [19] address some of the
limitations of the RD relating to non-ideal chipping sequences
and inaccuracies in the impulse response of the low-pass
filter (integrator) [20], [21]. These structures however impose
additional hardware complexity. From a spectral estimation
perspective, the MT method is considered in combination with
singular value decomposition (SVD) [22]. The basic premise
however, is of multiple RD structures equal to the number
of Slepian sequences employed, which given the high cost
of the MT and SVD, can impose a significant computational
overhead on the model. In [23], the MT spectral estimator
is applied instead of the periodogram along with CS greedy
algorithms to achieve improved signal recovery, though only
sinusoidal and narrowband modulated signals were considered,
while complexity implications were not analysed. Similarly in
[24], Slepian sequences were used to construct matrices for
improved sparse signal recovery, but without analysing either
leakage performance or the complexity cost incurred.

III. MT-RD COMPRESSIVE SENSING
FRAMEWORK

The operation of the RD structure shown in Figure 1, can
be explained as firstly sampling the input x(t) at the Nyquist
rate to yield a discrete-time vector x(n) of length N before
applying matrix Φ to obtain the measurements [25]:

y = Φx = ΦF−1f (1)

where is an NxN random matrix exhibiting low coherence
[25] and F the DFT sparsity matrix. Recovery of the frequency
vector f is achieved by applying l1-norm minimization [26].

Fig. 1: The original RD block diagram

Using the periodogram incurs a number of drawbacks which
gave impetus to investigate embedding the MT method into the
RD model. The MT technique applies multiple windows to
x(n) to determine a corresponding set of Fourier Transforms.

These windows are orthonormal discrete prolate spheroidal
(Slepian) sequences (tapers) with their respective DFT having
maximum energy concentration for a given bandwidth resolu-
tion β [8], [10]. The degree of concentration is reflected by the
corresponding sequence eigenvalues [1], [10] with the number
of sequences depending on N and β. The Fourier eigenspectra
of x(n) are determined from:

f lk =
1√
N

N−1∑
n=0

vl(n)x(n)ωkn
N (2)

where vl is the eigenvector representing the lth Slepian
sequence, ωN = e

−j2π
N and f lk is the kth frequency of vector

f l. Equation (2) can be expressed in vector form as:

f lk = FV lx (3)

V l is a NxN diagonal matrix, whose main diagonal contains
the vl eigenvector.

If there are L Slepian sequences, then a weighted -based
Fourier transform can be formed from the L eigenspectra as
follows:

fMT =

∑L=1
l=0 λlf

l∑L−1
l=0 λl

(4)

where λl is the eigenvalue associated with the lth Slepian
sequence. An attractive property of fMT is that each eigen-
spectrum contributes according to the degree of energy con-
centration it exhibits, which depends upon its corresponding
eigenvalue. Expressing (4) in vector form:

fMT = FSx = (FS)x = FMTx (5)

where S is a NxN diagonal matrix whose numerical values
depend only on the Slepian sequences and their associated
eigenvalues, while FMT is derived by windowing F with S.
Using (5), (1) can be expressed as:

y = Φx = Φ(F−1MT )fMT = ΘMT fMT (6)

So the recovery process for the MT-RD model uses ΘMT =
Φ(F−1MT ) instead of Θ. An alternative and insightful interpre-
tation of this is to rewrite (5) as:

fMT = F (Sx) = FxMT (7)

where xMT is the input signal windowed by the diagonal
matrix S. By using (7), (1) can recover fMT as follows:

yMT = ΦxMT = (ΦS)x = ΦMTF
−1fMT = ΘfMT (8)

where ΦMT = ΦS is the measurement matrix Φ modified
by S. (8) reveals that the MT-RD architecture not only
modifies F, but can also be used for MT-based spectrum
estimation by employing the modified measurement matrix
ΦMT to sample x and then recover fMT .



Both interpretations of the MT-RD model exploit the en-
hanced MT properties integrated into the model via S, which
scales either Φ or F, so both retain their respective characteris-
tics of randomness and sparsity. Due to its diagonal structure,
S does not affect the low coherence of Φ, while creating a
modified basis in which signals exhibit greater sparsity so
improving the CS performance. Furthermore, the S matrix
values can be embedded into the initialisation parameters of
the MT-RD model and stored in either ΦMT or FMT , so the
overall model complexity is not augmented. Crucially, MT-
RD is signal independent so no extra burden is imposed on
the signal providers, which from a CR system perspective, is
an advantageous feature.

IV. RESULTS DISCUSSION

To critically evaluate the new MT-RD CS model, a series of
experiments were undertaken upon a MATLAB-based simula-
tion platform using an HP Pavilion G6 Notebook with 2.4GHz
Intel Core-i5 and 4GB RAM. Three dissimilar test signals of
length 300ms were considered reflecting the signal modulation
types typically used in CR network standards [17, 18], namely:
i) A band-pass signal centred at 200Hz of 40Hz bandwidth
was AM modulated by a 1.2KHz carrier and approximated
with 76 tones, out of a total number of 512, spaced at 1Hz.
ii) A chirp signal centred at 1.3kHz with a chirp rate of
approximately 134Hz/sec and a sampling frequency 1.4 times
higher than Nyquist which corresponds to a signal length of
1024 samples. iii) a QPSK modulated signal centred at 1kHz
and 2.5kHz, with a bit rate of 215bps and sampling rate 1.3
times Nyquist, corresponding to 2048 samples. While the first
two test signals are narrowband, the third was selected to
investigate the performance of MT-RD on wideband signals.

Both the AM and chirp signals were sub-sampled at rates
between 70%, and 8.75% of the Nyquist rate which corre-
sponded to 512 and 64 samples respectively. For the QPSK
signal, the rates were set between 65% and 8.125% of Nyquist,
corresponding to 1024 and 128 samples respectively. To anal-
yse the robustness of the MT-RD structure, additive white
Gaussian noise was added to give an input SNR between
15dB and 5dB to each test signal, with the number of Slepian
sequences set to L = 10

The results for the chirp and AM signals are displayed
in Figures 2 and 3 respectively, where the total percentage
energy lying outside the bands of interest is termed the
PSD spectral leakage and is measured at various sub-Nyquist
sampling rates. The graphs reveal that for both signal types
there is a reduction of PSD spectral leakage even for sampling
rates below 20% of Nyquist. The MT-RD structure is also
more robust to noise, since the performance improvement
is consistent across the full input SNR range. For example,
for the chirp signal in Figure 2, the average spectral leakage
reduction achieved is 21%, 20%, 19% and 16% at input SNR
levels of 15dB, 10dB, 8dB and 5dB respectively, while for
the AM chirp signal (Figure 3), the corresponding leakage
reductions are 16%, 17%, 23% and 19%. This reflects the
key maximal energy concentration property [1], [3], [10] of

Slepian sequences which is crucially retained in both the
Fourier eigenspectra in (2) and weighted Fourier transforms
fMT in (8). Applying the MT-RD model to such narrowband
signals can be viewed as enhancing signal sparsity by reducing
the spectral leakage, so there are fewer significant frequency
components. This correspondingly improves CS performance
with the corollary being a more accurate spectral estimate.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

sampling rate (% Nyquist)

sp
ec
tra

ll
ea
ka
ge

(%
)

PSD Spectral Leakage, chirp modulation

Periodogram 15db
Multitaper 15db
Periodogram 10db
Multitaper 10db
Periodogram 8db
Multitaper 8db
Periodogram 5db
Multitaper 5db

Fig. 2: PSD spectral leakage performance of the MT-RD and
periodogram for the chirp test signal and various input SNR.
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Fig. 3: PSD spectral leakage performance of the MT-RD and
periodogram for the AM test signal and various input SNR.

To substantiate this superior CS performance, Figures 4 and 5
compare the recovered PSD from MT-RD and periodogram
respectively, for both the chirp and AM test signals. The
sampling rate and input SNR were arbitrarily chosen at 35% of
Nyquist, though other practical values are equally applicable.
To corroborate the noise robustness of the MT-RD model,
the input SNR was set to just 3dB, rather than 8dB. The
resulting spectral leakage is visually much less pronounced
in both MT-based test signal PSD, reduced by 20% and 17%
for chirp and AM signals respectively, to underscore the MT-
RD theory presented in Section 3.2. Figure 6 contrasts the
signal sparsity of the MT-RD and periodogram for an AM
modulated signal, across a range of input SNR in terms of the
number of the active frequency components. The sampling
rate was set to 32.5% of Nyquist, though other sampling
rates are equally applicable. For illustrative purposes, the
active frequency threshold was set at 20dB relative to the
maximum energy value, though an arbitrary threshold value is
equally valid. The curves reveal the MT consistently enhances
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Fig. 4: Recovered normalized MT-RD and periodogram-based
PSD of a chirp test signal at 35% Nyquist rate and 3dB input
SNR.
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Fig. 5: Recovered normalized MT-RD and periodogram-based
PSD of a chirp test signal at 35% Nyquist rate and 3dB input
SNR.

signal sparsity (fewer active frequencies) compared with the
periodogram, to underscore the fact that the modified basis
function discussed in Sections 1 and 3 gives narrowband-
type signals greater sparsity. Finally, the corresponding CS
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Fig. 6: Effect of MT method on signal sparsity verses input
SNR for an AM modulated signal.

results for the QPSK signal are displayed in Figures 7 and 8.
The sampling rate was set to 35% of Nyquist, though other
rates can be applied. The reason for the apparent unevenness
in the MT-RD results, with sometimes a small improvement
obtained, allied with occasional minor degradations, is that

QPSK signals are characterised by a main lobe being centred
about the carrier frequency, with side lobes distributed across
the spectrum. These side lobes are part of the true signal
spectrum rather than spectral leakage so there are instances
where the MT-RD model is unable to increase sparsity and
thus overall CS performance. For QPSK and other wideband
signal types, adopting a pre-colouring strategy within the RD
model is a more pragmatic CS solution [16], [17].
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Fig. 7: The effect of MT method on PSD spectral leakage of
QPSK test signal for various input SNR.
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MT-RD.

V. CONCLUSION

This paper has presented a novel multitaper-random demod-
ulator (MT-RD) design for compressive spectrum estimation.
The model efficaciously exploits the superior spectral leakage
properties of the MT spectral estimator in comparison to the
Fourier-based periodogram for sparse, narrowband, signals,
while providing analogous performance to the original RD
for high-order modulated signals like QPSK. Experimental
results using narrowband amplitude and chirp modulated test
signals, confirm the MT-RD model consistently provides en-
hanced signal sparsity, outperforming the original RD model
in terms of both spectral leakage and robustness to input noise.
Future work will critically evaluate the MT-RD design for
other modulation and access schemes including 16/64QAM
and OFDM, as well as comparing the efficacy of the new
model against both the compressive multiplexer and modulated
wideband converter CS designs.
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