4 research outputs found

    Beta-amyloid modulates tyrosine kinase B receptor expression in SHSY5Y neuroblastoma cells: influence of the antioxidant melatonin

    Full text link
    Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in humans and is characterized by neuronal loss, neurofibrillary tangles and beta-amyloid deposition. The interaction between neurotrophins and their tyrosine kinase (trk) receptors is important for cellular differentiation and survival. Interestingly, marked reductions in neurotrophins and receptors have been reported in AD. The cause of the decrease in these molecules remains unclear. However, the role of beta-amyloid (A beta) appears central in understanding the mechanisms controlling neurotrophin/trk expression. In this study we exposed SHSY5Y neuroblastoma cells to A beta or hydrogen peroxide and measured the expression of trk B/truncated trk B, and brain-derived neurotrophic factor (BDNF)/NT4 at the protein and molecular level. We show that A beta or hydrogen peroxide (H(2)O(2)) induces oxidative stress and cell cytotoxicity. The exposure of cells to A beta results in an increased trk B expression with a concurrent reduction in truncated trk B levels. H(2)O(2) exposure decreased both trk B and truncated trk B levels at the cell surface. At the molecular level trk B RNA increased in the presence of A beta and was unaffected by H(2)O(2). Similarly, BDNF and NT4 levels increased in the presence of A beta. Pre-treatment of cells with the anti-oxidant melatonin returns trk receptor expression, mRNA and BDNF/NT4 secretion to normal levels. These results are significant as they can help in the planning and implementation of AD treatment strategies involving neurotrophins

    Expression of pancreatitis-associated protein after traumatic brain injury: a mechanism potentially contributing to neuroprotection in human brain

    Full text link
    Neuronal cell death after severe traumatic brain injury (TBI) is caused by a complex interplay of pathological mechanisms including excitotoxicity, oxidative stress, mitochondrial dysfunction, extensive neuroinflammation, and ischemia-reperfusion injury. Pancreatitis-associated protein I (PAP I/reg2) was reported to be a survival factor for peripheral neurons, particularly sensory and motor neurons. In rat brains, by experimental TBI as well as by kainic acid induced brain seizure, PAP I and PAP III were found to be up-regulated in central neurons. In this study, we performed immunohistochemical staining in postmortem human brain from patients who died after severe TBI to demonstrate PAP expression on protein level in cerebellar Purkinje cells, pyramidal and granular neurons in cerebral cortex, and cortical neurons in the fore- and mid-brain. In primary cultures of rat brain cortical, hippocampal, and cerebellar neurons, we found neuroprotective effects for PAP I on H(2)O(2)-induced oxidative stress. Moreover, serum K(+)-deprivation induces apoptotic cell death in 55% of cerebellar granule neurons (CGN), whereas upon treatment with PAP I only 32% of CGN are apoptotic. Using Western blot analyses, we compared protein phosphorylation in neuronal signaling pathways activated by PAP I versus Interleukin-6 (IL-6). We found a rapid activation of Akt-kinase phosphorylation by PAP I with a peak at 15 min, whereas IL-6 induces Akt-phosphorylation lasting longer than 30 min. Phosphorylation of MAP-42/44 kinases is stimulated in a comparable fashion. Both, IL-6 and PAP I increase phosphorylation of NFÎșB for activation of gene transcription, whereas only IL-6 recruits STAT3 phosphorylation, indicating that STAT3 is not a target of PAP I transcription activation in brain neurons. Application of the Akt-inhibitor Wortmanin reveals only a partial inhibition of PAP I-dependent protection of CGN from H(2)O(2)-induced oxidative stress. Based on our findings, we suggest that PAP I is a long lasting neurotrophic signal for central neurons. The neuroprotective effects parallel those that have been described for effects of PAP I in ciliary neurotrophic factor (CNTF)-mediated survival of sensory and motor neurons. PAP I may act in autocrine and/or paracrine fashion and thus may contribute to endogenous protective mechanisms relevant under harmful conditions like oxidative stress, brain injury, or neurodegeneration

    Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain

    No full text
    Modification by O-GlcNAc involves a growing number of eucaryotic nuclear and cytosolic proteins. Glycosylation of intracellular proteins is a dynamic process that in several cases competes with and acts as a reciprocal modification system to phosphorylation. O-Linked beta-N-acetylglucosamine transferase (OGT) levels are highest in the brain, and neurodegenerative disorders such as Alzheimer disease have been shown to involve abnormally phosphorylated key proteins, probably as a result of hypoglycosylation. Here, we show that the neurodegenerative disease protein ataxin-10 (Atx-10) is associated with cytoplasmic OGT p110 in the brain. In PC12 cells and pancreas, this association is competed by the shorter OGT p78 splice form, which is down-regulated in brain. Overexpression of Atx-10 in PC12 cells resulted in the reconstitution of the Atx-10-OGT p110 complex and enhanced intracellular glycosylation activity. Moreover, in an in vitro enzyme assay using PC12 cell extracts, Atx-10 increased OGT activity 2-fold. These data indicate that Atx-10 might be essential for the maintenance of a critical intracellular glycosylation level and homeostasis in the brain

    The SIB Swiss Institute of bioinformatics\u27 resources: Focus on curated databases

    No full text
    corecore