24 research outputs found

    Conceptual and Numerical Analysis of Active Wingtip Vortex Cancellation in Propeller-Driven Electric Aircraft

    Get PDF
    As battery and electric motor technology continues to advance rapidly, propeller-driven electric aircraft are likely to become a significant part of the aviation market in the near future. One proposed design configuration for electric aircraft involves using large, wingtip- mounted propellers to actively cancel wingtip vortices, a method called active wingtip vortex cancellation (AWVC). By reclaiming part of the kinetic energy that would otherwise be lost to tip vortex formation, drag is decreased. In addition, the induced spanwise flow and upwash from the propeller causes the spanwise lift distribution to remain more uniform at the wingtips, increasing lift. Previous wind tunnel testing of this configuration characterized a significant increase in lift and decrease in drag, particularly in low-aspect-ratio configurations. This paper builds on that research by examining several test cases with a 3D, transient, viscous, sliding mesh CFD analysis in an effort to validate numerical methods for future conceptual design studies. In addition, many practical considerations regarding the implementation of this design are analyzed. Geometry from the aforementioned wind tunnel literature was reconstructed and analyzed. CFD indicated an 18.1% increase in lift and 5.1% increase in net thrust was possible solely through the phenomenon of AWVC. Furthermore, this CFD analysis matched wind tunnel data to within approximately 1%, validating the CFD approach for the analysis of more exotic configurations involving active wingtip vortex cancellation

    Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data

    Get PDF
    A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. However, this also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of filamentous networks from cryo-ET datasets to facilitate the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the manipulation of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner

    Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development

    Get PDF
    De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs

    Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins

    Get PDF
    The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA−/E−/H− and racE− mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics

    Electric and Magnetic Fields Inside Neurons and Their Impact Upon the Cytoskeletal Microtubules

    Full text link

    Experimental and numerical study on wingtip mounted propellers for low aspect ratio UAV design

    No full text
    The effects of the propulsion element in a propeller-driven aircraft are of paramount importance to the overall performance, stability and control characteristics of the system. Positioning the propeller at the wing's tip has been shown to improve the aerodynamic behavior of the aircraft. The complexity of the ow field associated with such a design, however, demands a clear understanding of the propeller-wing interaction. The goal of this masters thesis project is to study the aerodynamic effects present in a wingtip mounted propeller configuration for a low aspect ratio wing. In doing so, a wind tunnel experiment has been conducted for a simple, half-wing configuration. In addition, a numerical study has been performed with a tool, specially developed for treating wingtip mounted propellers.Aerospace Engineerin

    Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction

    No full text
    AbstractThe actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.</jats:p

    Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development

    No full text
    AbstractDe novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.</jats:p
    corecore