15 research outputs found

    Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    Get PDF
    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft

    Thermal analysis of radiometer containers for the 122m hoop column antenna concept

    Get PDF
    A thermal analysis was conducted for the 122 Meter Hoop Column Antenna (HCA) Radiometer electronic package containers. The HCA radiometer containers were modeled using the computer aided graphics program, ANVIL 4000, and thermally simulated using two thermal programs, TRASYS and MITAS. The results of the analysis provided relationships between the absorptance-emittance ratio and the average surface temperature of the orbiting radiometer containers. These relationships can be used to specify the surface properties, absorptance and reflectance, of the radiometer containers. This is an initial effort in determining the passive thermal protection needs for the 122 m HCA radiometer containers. Several recommendations are provided which expand this effort so specific passive and active thermal protection systems can be defined and designed

    Surface temperature measurements using a thin film thermal array

    Get PDF
    A thin film device was designed and fabricated to measure surface temperatures. An array of eight integrated thermal sensors are mounted on a 0.002 inch (0.05 mm) Kapton film and multiplexed to obtain an area thermal measurement. The device was tested on a flat plate airfoil and demonstrated a temperature variation of 0.55 C maximum and 0.05 C minimum compared to embedded thermocouples. Future improvements are also discussed

    Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    Get PDF
    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, O\mathcal{O}(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the 180 μ180~\muA, 1.161.16~GeV electron beam was measured with a statistical precision of <<~1\% per hour and a systematic uncertainty of 0.59\%. This exceeds the level of precision required by the \qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty <<~0.4\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.Comment: 9 pages, 7 figures, published in PR

    A novel comparison of Moller and Compton electron-beam polarimeters

    Get PDF
    We have performed a novel comparison between electron-beam polarimeters based on Moller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (\u3c 5 mu A) during the Qweakexperiment in Hall-Cat Jefferson Lab. These low current measurements were bracketed by the regular high current ( 180 mu A) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Moller measurements made at low beam currents to physics experiments performed at higher beam currents. The agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry. (C) 2017 The Authors. Published by Elsevier B.V

    The Jefferson Lab Free Electron Laser Program

    No full text
    A Free Electron Laser (FEL) called the IR Demo is operational as a user facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. It utilizes a 48 MeV superconducting accelerator that not only accelerates the beam but also recovers about 80% of the electron−beam power that remains after the FEL interaction. Utilizing this recirculation loop the machine has recovered cw average currents up to 5 mA, and has lased cw above 2 kW output at 3.1 microns. It is capable of output in the 1 to 6 micron range and can produce ~0.7 ps pulses in a continuous train at ~75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades under construction will extend operation beyond 10 kW average power in the near IR and produce multi-kilowatt levels of power from 0.3 to 25 microns. This talk will cover the performance measurements of this groundbreaking laser, scaling in near-term planned upgrades, and highlight some of the user activities at the facility

    A novel comparison of Møller and Compton electron-beam polarimeters

    No full text
    We have performed a novel comparison between electron-beam polarimeters based on Møller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (<5 μA) during the Qweak experiment in Hall-C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 μA) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Møller measurements made at low beam currents to physics experiments performed at higher beam currents. The agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry

    Persistent Fetal γ-Globin Expression in Adult Transgenic Mice following Deletion of Two Silencer Elements Located 3′ to the Human Aγ-Globin Gene

    No full text
    Natural deletions of the human γ-globin gene cluster lead to specific syndromes characterized by increased production of fetal hemoglobin in adult life and provide a useful model to delineate novel cis-acting elements involved in the developmental control of hemoglobin switching. A hypothesis accounting for these phenotypic features assumes that silencers located within the Aγ-to δ-gene region are deleted in hereditary persistence of fetal hemoglobin (HPFH) and δβ-thalassemias, leading to failure of switching. In the present study, we sought to clarify the in vivo role of two elements, termed Enh and F, located 3′ to the Aγ-globin, in silencing the fetal genes. To this end, we generated three transgenic lines using cosmid constructs containing the full length of the globin locus control region (LCR) linked to the 3.3-kb Aγ-gene lacking both the Enh and F elements. The Enh/F deletion resulted in high levels of Aγ-globin gene expression in adult mice in all single copy lines, whereas, the LCR-Aγ single copy lines which retain the Enh and F elements exhibited complete normal switching of the fetal Aγ-gene. Our study documents directly for the first time the in vivo role of these two gene-proximal negative regulatory elements in silencing the fetal globin gene in the perinatal period, and thus these data may permit their eventual exploitation in therapeutic approaches for thalassemias
    corecore