406 research outputs found

    The Catholic Physician and His Sphere of Influence

    Get PDF

    The Catholic Physician and His Sphere of Influence

    Get PDF

    Some Topics For Guild Discussions

    Get PDF

    Vacancy Tuning in Li,V-Substituted Lyonsites

    Get PDF
    © 2020 Taylor & Francis Group, LLC. The lyonsite structure, characterized by the formula A 4 M 3O12, is a relatively understudied tunneled crystal structure. This host structure is known to be compositionally flexible, able to incorporate a number of cations in various oxidation states into the A site. In the parent compound Co3.75V1.5Mo1.5O12, it is apparent that a stoichiometric vacancy of 0.25 is unavoidable as a result of Coulombic repulsion. This work focuses on the systematic elimination of vacancies by chemically introducing guest Li ions while maintaining host integrity. A full solid solution was found to exist with the formula □0.25–1/8xLi x Co3.75–7/8xV1.5–3/4xMo1.5+3/4xO12 (0 ≤ x ≤ 2), terminating at the known end member Li2Co2Mo3O12. Lattice refinements on PXRD data confirmed the isostructural nature of the whole series, and detailed structural analysis revealed that competition between Li and Co in the same crystallographic site is unequal, with Li exhibiting a stronger site preference for larger interstitial sites. Diffuse reflectance analysis revealed that the optical band gap is directly tunable with x, and supporting structure-property relationships were also explored via magnetometry and dielectric measurements

    Entropy and the driving force for the filling of carbon nanotubes with water

    Get PDF
    The spontaneous filling of hydrophobic carbon nanotubes (CNTs) by water observed both experimentally and from simulations is counterintuitive because confinement is generally expected to decrease both entropy and bonding, and remains largely unexplained. Here we report the entropy, enthalpy, and free energy extracted from molecular dynamics simulations of water confined in CNTs from 0.8 to 2.7-nm diameters. We find for all sizes that water inside the CNTs is more stable than in the bulk, but the nature of the favorable confinement of water changes dramatically with CNT diameter. Thus we find (i) an entropy (both rotational and translational) stabilized, vapor-like phase of water for small CNTs (0.8–1.0 nm), (ii) an enthalpy stabilized, ice-like phase for medium-sized CNTs (1.1–1.2 nm), and (iii) a bulk-like liquid phase for tubes larger than 1.4 nm, stabilized by the increased translational entropy as the waters sample a larger configurational space. Simulations with structureless coarse-grained water models further reveal that the observed free energies and sequence of transitions arise from the tetrahedral structure of liquid water. These results offer a broad theoretical basis for understanding water transport through CNTs and other nanostructures important in nanofluidics, nanofiltrations, and desalination

    A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62

    Full text link
    MSH 11-62 (G291.1-0.9) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low density region. Here we present a study of MSH 11-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array (ATCA). We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi LAT, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.Comment: 12 Pages, 12 figures. Accepted for publication in the Astrophysical Journa

    palaeoverse: A community‐driven R package to support palaeobiological analysis

    Get PDF
    1. The open-source programming language ‘R' has become a standard tool in the palaeobiologist's toolkit. Its popularity within the palaeobiological community continues to grow, with published articles increasingly citing the usage of R and R packages. However, there are currently a lack of agreed standards for data preparation and available frameworks to support the implementation of such standards. Consequently, data preparation workflows are often unclear and not reproducible, even when code is provided. Moreover, due to a lack of code accessibility and documentation, palaeobiologists are often forced to ‘reinvent the wheel’ to find solutions to issues already solved by other members of the community. 2. Here, we introduce palaeoverse, a community-driven R package to aid data preparation and exploration for quantitative palaeobiological research. The package is freely available and has three core principles: (1) streamline data preparation and analyses; (2) enhance code readability; and (3) improve reproducibility of results. To develop these aims, we assessed the analytical needs of the broader palaeobiological community using an online survey, in addition to incorporating our own experiences. 3. In this work, we first report the findings of the survey, which shaped the development of the package. Subsequently, we describe and demonstrate the functionality available in palaeoverse and provide usage examples. Finally, we discuss the resources we have made available for the community and our future plans for the broader Palaeoverse project. 4. palaeoverse is a community-driven R package for palaeobiology, developed with the intention of bringing palaeobiologists together to establish agreed standards for high-quality quantitative research. The package provides a user-friendly platform for preparing data for analysis with well-documented open-source code to enhance transparency. The functionality available in palaeoverse improves code reproducibility and accessibility, which is beneficial for both the review process and future research
    corecore