44 research outputs found

    Swimming with ShARCS: Comparison of On-sky Sensitivity With Model Predictions for ShaneAO on the Lick Observatory 3-meter Telescope

    Full text link
    The Lick Observatory's Shane 3-meter telescope has been upgraded with a new infrared instrument (ShARCS - Shane Adaptive optics infraRed Camera and Spectrograph) and dual-deformable mirror adaptive optics (AO) system (ShaneAO). We present first-light measurements of imaging sensitivity in the Ks band. We compare measured results to predicted signal-to-noise ratio and magnitude limits from modeling the emissivity and throughput of ShaneAO and ShARCS. The model was validated by comparing its results to the Keck telescope adaptive optics system model and then by estimating the sky background and limiting magnitudes for IRCAL, the previous infra-red detector on the Shane telescope, and comparing to measured, published results. We predict that the ShaneAO system will measure lower sky backgrounds and achieve 20\% higher throughput across the JHKJHK bands despite having more optical surfaces than the current system. It will enable imaging of fainter objects (by 1-2 magnitudes) and will be faster to reach a fiducial signal-to-noise ratio by a factor of 10-13. We highlight the improvements in performance over the previous AO system and its camera, IRCAL.Comment: 13 pages, 5 figures, SPIE Astronomical Telescopes + Instrumentation, Montreal 201

    Performance of MEMS-based visible-light adaptive optics at Lick Observatory: Closed- and open-loop control

    Full text link
    At the University of California's Lick Observatory, we have implemented an on-sky testbed for next-generation adaptive optics (AO) technologies. The Visible-Light Laser Guidestar Experiments instrument (ViLLaGEs) includes visible-light AO, a micro-electro-mechanical-systems (MEMS) deformable mirror, and open-loop control of said MEMS on the 1-meter Nickel telescope at Mt. Hamilton. In this paper we evaluate the performance of ViLLaGEs in open- and closed-loop control, finding that both control methods give equivalent Strehl ratios of up to ~ 7% in I-band and similar rejection of temporal power. Therefore, we find that open-loop control of MEMS on-sky is as effective as closed-loop control. Furthermore, after operating the system for three years, we find MEMS technology to function well in the observatory environment. We construct an error budget for the system, accounting for 130 nm of wavefront error out of 190 nm error in the science-camera PSFs. We find that the dominant known term is internal static error, and that the known contributions to the error budget from open-loop control (MEMS model, position repeatability, hysteresis, and WFS linearity) are negligible.Comment: 16 pages, 13 figures, to appear in Proc. SPIE 2010 Vol. 7736 Adaptive Optics Systems II, high-resolution full-color version available at http://spiedl.org

    MEMS practice, from the lab to the telescope

    Full text link
    Micro-electro-mechanical systems (MEMS) technology can provide for deformable mirrors (DMs) with excellent performance within a favorable economy of scale. Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our decade of practice with the micromirrors, from inspecting and characterizing devices to evaluating their performance in the lab. We also show MEMS wavefront correction on-sky with the "Villages" AO system on a 1-m telescope, including open-loop control and visible-light imaging. Our work demonstrates the maturity of MEMS technology for astronomical adaptive optics.Comment: 14 pages, 15 figures, Invited Paper, SPIE Photonics West 201

    Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics

    Full text link
    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-um-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r_0=10-15cm. The MEMS when solitary suffered saturation ~4% of the time. Simulating a woofer DM with ~5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.Comment: 16 pages, 10 figure

    ShaneAO: wide science spectrum adaptive optics system for the Lick Observatory

    Full text link
    A new high-order adaptive optics system is now being commissioned at the Lick Observatory Shane 3-meter telescope in California. This system uses a high return efficiency sodium beacon and a combination of low and high-order deformable mirrors to achieve diffraction-limited imaging over a wide spectrum of infrared science wavelengths covering 0.8 to 2.2 microns. We present the design performance goals and the first on-sky test results. We discuss several innovations that make this system a pathfinder for next generation AO systems. These include a unique woofer-tweeter control that provides full dynamic range correction from tip/tilt to 16 cycles, variable pupil sampling wavefront sensor, new enhanced silver coatings developed at UC Observatories that improve science and LGS throughput, and tight mechanical rigidity that enables a multi-hour diffraction- limited exposure in LGS mode for faint object spectroscopy science.Comment: 11 pages, 10 figures. Presented at SPIE Astronomical Telescopes + Instrumentation conference, paper 9148-7

    Commissioning ShARCS: the Shane Adaptive optics infraRed Camera-Spectrograph for the Lick Observatory 3-m telescope

    Full text link
    We describe the design and first-light early science performance of the Shane Adaptive optics infraRed Camera-Spectrograph (ShARCS) on Lick Observatory's 3-m Shane telescope. Designed to work with the new ShaneAO adaptive optics system, ShARCS is capable of high-efficiency, diffraction-limited imaging and low-dispersion grism spectroscopy in J, H, and K-bands. ShARCS uses a HAWAII-2RG infrared detector, giving high quantum efficiency (>80%) and Nyquist sampling the diffraction limit in all three wavelength bands. The ShARCS instrument is also equipped for linear polarimetry and is sensitive down to 650 nm to support future visible-light adaptive optics capability. We report on the early science data taken during commissioning.Comment: 9 pages, 7 figures. Presented at SPIE Astronomical Telescopes + Instrumentation conference, paper 9148-11

    Opto-Mechanical Design of ShaneAO: the Adaptive Optics System for the 3-meter Shane Telescope

    Full text link
    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.Comment: 14 pages, 14 figures, 4 tables. Presented at SPIE Astronomical Telescopes + Instrumentation conference, paper 9148-11

    Using the Gerchberg-Saxton algorithm to reconstruct non-modulated pyramid wavefront sensor measurements

    Full text link
    Adaptive optics (AO) is a technique to improve the resolution of ground-based telescopes by correcting, in real-time, optical aberrations due to atmospheric turbulence and the telescope itself. With the rise of Giant Segmented Mirror Telescopes (GSMT), AO is needed more than ever to reach the full potential of these future observatories. One of the main performance drivers of an AO system is the wavefront sensing operation, consisting of measuring the shape of the above mentioned optical aberrations. Aims. The non-modulated pyramid wavefront sensor (nPWFS) is a wavefront sensor with high sensitivity, allowing the limits of AO systems to be pushed. The high sensitivity comes at the expense of its dynamic range, which makes it a highly non-linear sensor. We propose here a novel way to invert nPWFS signals by using the principle of reciprocity of light propagation and the Gerchberg-Saxton (GS) algorithm. We test the performance of this reconstructor in two steps: the technique is first implemented in simulations, where some of its basic properties are studied. Then, the GS reconstructor is tested on the Santa Cruz Extreme Adaptive optics Laboratory (SEAL) testbed located at the University of California Santa Cruz. This new way to invert the nPWFS measurements allows us to drastically increase the dynamic range of the reconstruction for the nPWFS, pushing the dynamics close to a modulated PWFS. The reconstructor is an iterative algorithm requiring heavy computational burden, which could be an issue for real-time purposes in its current implementation. However, this new reconstructor could still be helpful in the case of many wavefront control operations. This reconstruction technique has also been successfully tested on the Santa Cruz Extreme AO Laboratory (SEAL) bench where it is now used as the standard way to invert nPWFS signal
    corecore