1,827 research outputs found
Thermodynamic and transport properties of fluids and selected solids for cryogenic applications Summary report, 1 Dec. 1965 - 1 Nov. 1970
Summary data on thermodynamic and transport properties of fluids and solids for cryogenic application
Interpretation of X-ray Absorption Spectroscopy in the Presence of Surface Hybridization
X-ray absorption spectroscopy yields direct access to the electronic and
geometric structure of hybrid inorganic-organic interfaces formed upon
adsorption of complex molecules at metal surfaces. The unambiguous
interpretation of corresponding spectra is challenged by the intrinsic
geometric flexibility of the adsorbates and the chemical interactions with the
interface. Density-functional theory (DFT) calculations of the extended
adsorbate-substrate system are an established tool to guide peak assignment in
X-ray photoelectron spectroscopy (XPS) of complex interfaces. We extend this to
the simulation and interpretation of X-ray absorption spectroscopy (XAS) data
in the context of functional organic molecules on metal surfaces using
dispersion-corrected DFT calculations within the transition potential approach.
On the example of X-ray absorption signatures for the prototypical case of
2H-porphine adsorbed on Ag(111) and Cu(111) substrates, we follow the two main
effects of the molecule/surface interaction on XAS: (1) the substrate-induced
chemical shift of the 1s core levels that dominates in physisorbed systems and
(2) the hybridization-induced broadening and loss of distinct resonances that
dominates in more chemisorbed systems.Comment: 13 pages, 4 figure
Green Currents for Meromorphic Maps of Compact K\"ahler Manifolds
We consider the dynamics of meromorphic maps of compact K\"ahler manifolds.
In this work, our goal is to locate the non-nef locus of invariant classes and
provide necessary and sufficient conditions for existence of Green currents in
codimension one.Comment: Statement of Theorem 1.5 is slightly improved. Proposition 5.2 and
Theorem 5.3 are adde
Post-critical set and non existence of preserved meromorphic two-forms
We present a family of birational transformations in depending on
two, or three, parameters which does not, generically, preserve meromorphic
two-forms. With the introduction of the orbit of the critical set (vanishing
condition of the Jacobian), also called ``post-critical set'', we get some new
structures, some "non-analytic" two-form which reduce to meromorphic two-forms
for particular subvarieties in the parameter space. On these subvarieties, the
iterates of the critical set have a polynomial growth in the \emph{degrees of
the parameters}, while one has an exponential growth out of these subspaces.
The analysis of our birational transformation in is first carried out
using Diller-Favre criterion in order to find the complexity reduction of the
mapping. The integrable cases are found. The identification between the
complexity growth and the topological entropy is, one more time, verified. We
perform plots of the post-critical set, as well as calculations of Lyapunov
exponents for many orbits, confirming that generically no meromorphic two-form
can be preserved for this mapping. These birational transformations in ,
which, generically, do not preserve any meromorphic two-form, are extremely
similar to other birational transformations we previously studied, which do
preserve meromorphic two-forms. We note that these two sets of birational
transformations exhibit totally similar results as far as topological
complexity is concerned, but drastically different results as far as a more
``probabilistic'' approach of dynamical systems is concerned (Lyapunov
exponents). With these examples we see that the existence of a preserved
meromorphic two-form explains most of the (numerical) discrepancy between the
topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure
Defining digital coaching: a qualitative inductive approach
The term ‘digital coaching’ is widely used but ill-defined. The present study therefore investigates how digital coaching is defined and how it differentiates from face-to-face coaching and other digital-technology-enabled (DT-enabled) formats, such as digital training, digital mentoring, or digital consulting. A qualitative inductive approach was chosen for more in-depth and open-minded content. Based on previous studies on the importance of asking coaches working in the field, 260 coaches working in the field of digital coaching were surveyed. The given answers depict the importance of differing between forms of DT-enabled coaching. Thus, digital coaching is a DT-enabled, synchronous conversation between a human coach and a human coachee, which is different to artificial intelligence (AI) coaching and coaching that is supported by asynchronous digital and learning communication technologies. Due to this definition and differentiation, future studies can explore the digital coaching process and its effectiveness – particularly in comparison to other formats. Furthermore, this clear definition enables practitioners to maintain professional standards and manage client’s expectations of digital coaching while helping clients understand what to expect from digital coaching
Embeddings of SL(2,Z) into the Cremona group
Geometric and dynamic properties of embeddings of SL(2,Z) into the Cremona
group are studied. Infinitely many non-conjugate embeddings which preserve the
type (i.e. which send elliptic, parabolic and hyperbolic elements onto elements
of the same type) are provided. The existence of infinitely many non-conjugate
elliptic, parabolic and hyperbolic embeddings is also shown.
In particular, a group G of automorphisms of a smooth surface S obtained by
blowing-up 10 points of the complex projective plane is given. The group G is
isomorphic to SL(2,Z), preserves an elliptic curve and all its elements of
infinite order are hyperbolic.Comment: to appear in Transformation Group
Hypoalbuminaemia predicts outcome in adult patients with congenital heart disease
Background In patients with acquired heart failure, hypoalbuminaemia is associated with increased risk of death. The prevalence of hypoproteinaemia and hypoalbuminaemia and their relation to outcome in adult patients with congenital heart disease (ACHD) remains, however, unknown. Methods Data on patients with ACHD who underwent blood testing in our centre within the last 14 years were collected. The relation between laboratory, clinical or demographic parameters at baseline and mortality was assessed using Cox proportional hazards regression analysis. Results A total of 2886 patients with ACHD were included. Mean age was 33.3 years (23.6–44.7) and 50.1% patients were men. Median plasma albumin concentration was 41.0 g/L (38.0–44.0), whereas hypoalbuminaemia (<35 g/L) was present in 13.9% of patients. The prevalence of hypoalbuminaemia was significantly higher in patients with great complexity ACHD (18.2%) compared with patients with moderate (11.3%) or simple ACHD lesions (12.1%, p<0.001). During a median follow-up of 5.7 years (3.3–9.6), 327 (11.3%) patients died. On univariable Cox regression analysis, hypoalbuminaemia was a strong predictor of outcome (HR 3.37, 95% CI 2.67 to 4.25, p<0.0001). On multivariable Cox regression, after adjusting for age, sodium and creatinine concentration, liver dysfunction, functional class and disease complexity, hypoalbuminaemia remained a significant predictor of death. Conclusions Hypoalbuminaemia is common in patients with ACHD and is associated with a threefold increased risk of risk of death. Hypoalbuminaemia, therefore, should be included in risk-stratification algorithms as it may assist management decisions and timing of interventions in the growing ACHD population
Peptide Drug Discovery: Innovative Technologies and Transformational Medicines
Interest in peptide drug discovery is surging. In the past several years,numerous pharmaceutical and biotech companies have committed considerable resources to peptide-based drug discovery. In part,this is being fueled by an increasing recognition that peptide drugs combine many of the virtues of small molecules and proteins, while minimizing several of their drawbacks, and that peptides can potentially expand the druggable space to include intracellular, extracellular and membrane associated protein–protein interactions. Moreover, powerful new in vitro and in silico technologies and breakthroughs in our understanding of natural peptides have emerged that provide peptide chemists with the toolsand insights they need to solve the various pharmacokinetic problems that often plague peptide drug discovery efforts. From stapled peptides,to highly versatile macrocyclic peptides and disulfide-rich peptides, to other peptides with various nonstandard chemistries, peptides are poised to fulfill their promise of providing a drug class that straddles the chemical space between small molecules and proteins, ultimately resulting in transformational medicines and improved clinical outcomes
- …