6 research outputs found

    Spectral analysis and inverse modeling of satellite data and aeromagnetic data

    Get PDF
    A series of Earth observation satellite missions has opened a new era for the study of Earth’s magnetic field. Due to the homogeneous global coverage and high accuracy of satellite data, magnetic models derived from those provide reliable estimates of the long-wavelength components of the crustal magnetic field. How such satellite magnetic models can contribute to our understanding of the characteristic of the crustal structures is the main topic of this thesis. First, a comparison of conventional filtering methods was made and a new method for regional spherical harmonic analysis is presented and a thorough discussion is provided by considering the case study of the Australian continent. Next, together with reduction to the pole of satellite data and long-wavelength corrected aeromagnetic compilations, correlated tectonic signatures over the neighboring continents in a Gondwana framework are shown. Finally, a positivity constraint was applied to the global magnetic susceptibility inversion and a globally inverted susceptibility model for a reconstructed Gondwana framework is presented and discussed

    New magnetic anomaly map for the Red Sea reveals transtensional structures associated with rotational rifting

    Get PDF
    The Red Sea is a modern analogue for studying continental break-up. Particularly, the Red Sea shows along-strike variability in the architecture, magmatism and associated style of rifting. In order to study these variabilities, continuous geophysical data that cover the entire length of the basin is desired. Our study aims to produce a continuous, reliable and robust magnetic anomaly map for the Red Sea. We present a new magnetic anomaly map for the Red Sea, derived from re-processing of shipborne data, merged and conformed to a recent satellite model, LCS-1. The new magnetic map reveals prominent patterns of magnetic anomalies in sub-perpendicular directions to the Red Sea, with a northward increase in obliquity. We provide further analysis for the magnetic data and associate sets of magnetic trends with transtensional basement structures. Directional analysis suggests a gradual increase in shear component along the Red Sea. The magnetic trends are coaxial with independent indicators of finite and instantaneous strains, and thus implies that these structures and their variability are related to the kinematic framework of the rift. We discuss the consequences of rifting close to the Euler pole, i.e. rotational rifting, and argue that both passive and active forces can explain an increased along-strike transtension, and accordingly the associated variability along the Red Sea

    Global High-Resolution Magnetic Field Inversion using Spherical Harmonic Representation of Tesseroids as Individual Sources

    Get PDF
    In this study, we present a novel approach combining the advantages of tesseroids in representing geophysical structures though their voxel-like discretization features with a spherical harmonic representation of the magnetic field. Modelling of the Earth lithospheric magnetic field is challenging since part of the spectra is hidden by the core field and the forward modeled field of a lithospheric magnetization is always biased by the spectral range used. In our approach, a spherical harmonic representation of the magnetic field of spherical prisms (tesseroids) is used for high-resolution magnetic inversion of lithospheric field models. The use of filtered spherical harmonic models of the magnetic field of each tesseroid ensures that the resulting field matches the spectral range of the input data. For the inversion, we use the projected gradient method. The projected gradient method easily allows us to assign an initial guess (i.e., a-priori assumption) for the inversion and avoids negative values of susceptibilities. The latter is providing more plausible models since induced magnetization is assumed to be dominant over the continents and, for the oceans, a remanence model can be subtracted. We show an application of the technique to a synthetic dataset and a satellite-derived lithospheric field model where the model geometry is based on seismic information. We also demonstrate a proof-of-concept for high-resolution tile-wise inversion for the Bangui anomaly in Africa

    East Antarctica magnetically linked to its ancient neighbours in Gondwana

    Get PDF
    We present a new magnetic compilation for Central Gondwana conformed to a recent satellite magnetic model (LCS-1) with the help of an equivalent layer approach, resulting in consistent levels, corrections that have not previously been applied. Additionally, we use the satellite data to its full spectral content, which helps to include India, where high resolution aeromagnetic data are not publically available. As India is located north of the magnetic equator, we also performed a variable reduction to the pole to the satellite data by applying an equivalent source method. The conformed aeromagnetic and satellite data are superimposed on a recent deformable Gondwana plate reconstruction that links the Kaapvaal Craton in Southern Africa with the Grunehogna Craton in East Antarctica in a tight fit. Aeromagnetic anomalies unveil, however, wider orogenic belts that preserve remnants of accreted Meso- to Neoproterozoic crust in interior East Antarctica, compared to adjacent sectors of Southern Africa and India. Satellite and aeromagnetic anomaly datasets help to portray the extent and architecture of older Precambrian cratons, re-enforcing their linkages in East Antarctica, Australia, India and Africa

    A new strategy for aeromagnetic survey merging and application to Greenland

    No full text
    Aeromagnetic surveys help us to learn about geology. To achieve good coverage, surveys need to be merged. However, conventional methods introduce long-wavelength bias and cannot handle the individual survey quality. We develop a new approach to process large aeromagnetic surveys with an equivalent layer approach and combine them with satellite data. To facilitate the usage of large data sets, we divide the study area into blocks and treat each block individually. We adjust the block size according to the resolution of the equivalent source model. Within each block we solve for equivalent sources using an iterative linear inversion with Tikhonov regularization. We apply a multi-resolution strategy by iteratively decreasing the dipole spacing, dipole depth and block size. In each step, the resolution is applied to the residual of the previous steps. This ensures both a good representation of the large and small-scale structures as well as reasonable computational costs. Advantages of the blockwise inversion are the handling with large data sets due to splitting up the study area and neglecting influences of sources above a certain distance. This reduces computational costs and still fits the data well in comparison with an unblocked inversion. Some structures cannot be resolved well with just one dipole layer, so the multi-resolution strategy enables to have a better fit by separating regional and local sources. For the final compilation, we replace the long wavelengths part of the aeromagnetic data with satellite data to spherical harmonic degree 110. We demonstrate our new approach with a newly compiled large data base for Greenland.poste

    Magnetic Tesseroid Inversion: a program for global magnetic tesseroid inversion

    No full text
    Más información: https://github.com/eldarbaykiev/magtess-inversion-pythonContacto: Eldar Baykiev, [email protected] Contacto: Dilixiati Yixiati, [email protected] Contacto: Nils Holzrichter, [email protected] Contacto: Jörg Ebbing, [email protected] Contacto: Marco Brönner, [email protected] Contacto: Karl Fabian, [email protected] Tesseroid Inversion is a collection of tools with a graphic interface for the inverse modelling of the global magnetic field with spherical prisms (tesseroids) used as magnetic sources.German Research Council (DFG), Special Priority Programme SPP 1788 ‘Dynamic Earth'; European Spacial Agency, Science Element 3D EarthPeer reviewe
    corecore