8 research outputs found

    Accessory toxins of vibriopathogens and their role in epithelial disruption during infection

    Get PDF
    © 2007-2018 Frontiers Media S.A. All Rights Reserved. Gastrointestinal episodes associated with Vibrio species have been rising worldwide in the last few years. Consequently, it is important to comprehend how occurs the production of diarrhea, to establish new preventive and therapeutic measures. Besides the classical CT and TCP toxins, Zot, RTX, and Ace among others have been deeply studied in V. Cholerae. However, in other Vibrio species of clinical interest, where some of these toxins have been reported, there is practically no information. Zot activates a cascade of signals inside of the cell that increase the permeability of epithelial barrier, while RTX causes depolymerization of the actin cytoskeleton and Ace increases the permeability of intestinal cell monolayers. The goal of this study is to acquire information about the distribution of these toxins in human pathogenic Vibrios and to review the progress in the study of their role in the intestinal epithelium during infection

    Fenofibrate Decreases Ethanol-Induced Neuroinflammation and Oxidative Stress and Reduces Alcohol Relapse in Rats by a PPAR-α-Dependent Mechanism

    No full text
    High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers, driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore, we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1ÎČ and IL-6, and of an oxidative stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cortex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist (GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activation. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication, as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder (AUD) during withdrawal

    Bacteriophages in the control of pathogenic vibrios

    Get PDF
    Vibrios are common inhabitants of marine and estuarine environments. Some of them can be pathogenic to humans and/or marine animals using a broad repertory of virulence factors. Lately, several reports have indicated that the incidence of Vibrio infections in humans is rising and also in animals constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control.Fondecyt 11140412 11140257 Proyecto PUCV DI Investigacion Innovadora Interdisciplinaria 039.461/201

    Gene expression of Vibrio parahaemolyticus growing in laboratory isolation conditions compared to those common in its natural ocean environment

    No full text
    Abstract Background Vibrio parahaemolyticus is an autochthonous marine bacterial species comprising strains able to grow in broth containing bile salts at 37 °C, a condition seldom found in the ocean. However, this condition is used for isolation in the laboratory because it is considered a necessary property for pathogenesis. In this context, revealing how gene expression enables V. parahaemolyticus to adapt to this particular condition –common to almost all V. parahaemolyticus isolates- will improve our understanding of the biology of this important pathogen. To determine the genes of V. parahaemolyticus differentially expressed when growing in isolation condition (37 °C, 0.9% NaCl, and 0.04% bile salts) referred to those at the temperature and salt concentration prevailing in ocean south of Chile (marine-like condition; 12 °C, 3% NaCl, and absence of bile salts) we used high-throughput sequencing of RNA. Results Our results showed that in the isolation condition, among the 5034 genes annotated in the V. parahaemolyticus RIMD2210633 genome, 344 were upregulated and 433 downregulated referred to the marine-like condition, managing an adjusted P-value (Padj) < E−5. Between the 50 more highly expressed genes, among the small RNAs (sRNA), the three carbon storage regulators B (CsrB) were up four to six times, while RyhB, related to iron metabolism besides motility control, was down about eight times. Among proteins, BfdA, a hemolysin-co-regulated protein (Hcp1) secreted by T6SS1, one of the most highly expressed genes, was about 140 times downregulated in isolation condition. The highest changes in relative expression were found among neighboring genes coding for proteins related to respiration, which were about 40 times upregulated. Conclusions When V. parahaemolyticus is grown in conditions used for laboratory isolation 777 genes are up- or downregulated referred to conditions prevailing in the marine-like condition; the most significantly overrepresented categories among upregulated processes were those related to transport and localization, while secretion and pathogenesis were overrepresented among downregulated genes. Genes with the highest differential expression included the sRNAs CsrB and RhyB and the mRNAs related with secretion, nutritional upshift, respiration and rapid growing

    Conservation of small regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT encoded by the pathogenicity island (VPaI-7) of pandemic strains

    Get PDF
    Small regulatory RNAs (sRNAs) are molecules that play an important role in the regulation of gene expression. sRNAs in bacteria can affect important processes, such as metabolism and virulence. Previous studies showed a significant role of sRNAs in the Vibrio species, but knowledge about Vibrio parahaemolyticus is limited. Here, we examined the conservation of sRNAs between V. parahaemolyticus and other human Vibrio species, in addition to investigating the conservation between V. parahaemolyticus strains differing in pandemic origin. Our results showed that only 7% of sRNAs were conserved between V. parahaemolyticus and other species, but 88% of sRNAs were highly conserved within species. Nonetheless, two sRNAs coding to RNA-OUT, a component of the Tn10/IS10 system, were exclusively present in pandemic strains. Subsequent analysis showed that both RNA-OUT were located in pathogenicity island-7 and would interact with transposase VPA1379, according to the model of pairing of IS10-encoded antisense RNAs. According to the location of RNA-OUT/VPA1379, we also investigated if they were expressed during infection. We observed that the transcriptional level of VPA1379 was significantly increased, while RNA-OUT was decreased at three hours post-infection. We suggest that IS10 transcription increases in pandemic strains during infection, probably to favor IS10 transposition and improve their fitness when they are facing adverse conditions

    Exploring the Genomic Traits of Non-toxigenic Vibrio parahaemolyticus Strains Isolated in Southern Chile

    Get PDF
    Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. As reported in other countries, after the rise and fall of the pandemic strain in Chile, other post-pandemic strains have been associated with clinical cases, including strains lacking the major toxins TDH and TRH. Since the presence or absence of tdh and trh genes has been used for diagnostic purposes and as a proxy of the virulence of V. parahaemolyticus isolates, the understanding of virulence in V. parahaemolyticus strains lacking toxins is essential to detect these strains present in water and marine products to avoid possible food-borne infection. In this study, we characterized the genome of four environmental and two clinical non-toxigenic strains (tdh-, trh-, and T3SS2-). Using whole-genome sequencing, phylogenetic, and comparative genome analysis, we identified the core and pan-genome of V. parahaemolyticus of strains of southern Chile. The phylogenetic tree based on the core genome showed low genetic diversity but the analysis of the pan-genome revealed that all strains harbored genomic islands carrying diverse virulence and fitness factors or prophage-like elements that encode toxins like Zot and RTX. Interestingly, the three strains carrying Zot-like toxin have a different sequence, although the alignment showed some conserved areas with the zot sequence found in V. cholerae. In addition, we identified an unexpected diversity in the genetic architecture of the T3SS1 gene cluster and the presence of the T3SS2 gene cluster in a non-pandemic environmental strain. Our study sheds light on the diversity of V. parahaemolyticus strains from the southern Pacific which increases our current knowledge regarding the global diversity of this organism
    corecore