90 research outputs found

    Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Get PDF
    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress

    Plant growth response of broad bean (Vicia faba L.) to biochar amendment of loamy sand soil under irrigated and drought conditions

    Get PDF
    The broad bean (Vicia faba L.) originated in the Near East, and is cultivated around the world, however, its cultivation is affected by drought stress in several central growing regions of the globe. The present study was designed to determine the effect of biochar on bean plant growth, acquisition of nitrogen (N), phosphorus (P), and potassium (K) and on soil nutrient contents under drought and irrigated conditions. Pyrolysis char from maize (MBC) at 2 and 4% concentrations was used for pot experiments. The shoot and/or root biomass of bean grown in soil amended with 2 and 4% MBC under irrigated condition was increased. Furthermore, increased nodule numbers of bean grown at 4% MBC amendment was observed under both irrigated and drought conditions. P and K uptake of plants under drought conditions increased by 14% and 23% under 2% MBC amendment, and by 23% and 34% under 4% MBC amendment as compared to plants grown without biochar application, respectively. This study demonstrated beneficial effects of biochar produced from maize on growth and nutrient uptake of broad bean, by improving the nodule formation and soil nutritional contents in a sandy loam soil.Peer Reviewe

    Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture

    Get PDF
    It is a well accepted strategy to improve plant salt tolerance through inoculation with beneficial microorganisms. However, its underlying mechanisms still remain unclear. In the present study, hydroponic experiments were conducted to evaluate the effects of Bradyrhizobium japonicum USDA 110 with salt-tolerant Pseudomonas putida TSAU1 on growth, protein content, nitrogen, and phosphorus uptake as well as root system architecture of soybean (Glycine max L.) under salt stress. The results indicated that the combined inoculation with USDA 110 and TSAU1 significantly improved plant growth, nitrogen and phosphorus contents, and contents of soluble leaf proteins under salt stress compared to the inoculation with the symbiont alone or compared to un-inoculated ones. The root architectural traits, like root length, surface area, project area, and root volume; as well as nodulation traits were also significantly increased by co-inoculation with USDA 110 and TSAU1. The plant-growth promoting rhizobacteria (PGPR) P. putida strain TSAU1 could improve the symbiotic interaction between the salt-stressed soybean and B. japonicum USDA 110. In conclusion, inoculation with B. japonicum and salt-tolerant P. putida synergistically improved soybean salt tolerance through altering root system architecture facilitating nitrogen and phosphorus acquisition, and nodule formation.Peer reviewe

    Biochar Additions Alter the Abundance of P-Cycling-Related Bacteria in the Rhizosphere Soil of Portulaca oleracea L. under Salt Stress

    Get PDF
    Numerous reports confirm a positive impact of biochar amendments on soil enzyme activities, nutrient cycles, and, finally, plant growth and development. However, reports explaining the process behind such diverse observations are scarce. The aim of the present study was (1) to evaluate the effect of biochar on the growth of purslane (Portulaca oleracea L.) and nutrients; (2) to determine the response of rhizosphere enzyme activities linked to soil phosphorus cycling after bio-char amendment under non–saline and saline soil conditions. Furthermore, we investigate whether adding biochar to soil alters the abundance of P-cycling-related bacteria. Two rates of biochar (2% and 4%) were applied in pot experiments. Biochar addition of 2% significantly increased plant growth under non-saline and saline soil conditions by 21% and 40%, respectively. Moreover, applying biochar increased soil microbial activity as observed by fluorescein diacetate (FDA) hydrolase activity, as well as phosphomonoesterase activities, and the numbers of colony-forming units (CFU) of P-mobilizing bacteria. Soil amended with 2% biochar concentration increased total soil nitrogen (Nt), phosphorus (P), and total carbon (Ct) concentrations by 18%, 15%, and 90% under non-saline soil conditions and by 29%, 16%, and 90% in saline soil compared the control, respectively. The soil FDA hydrolytic activity and phosphatase strongly correlate with soil Ct, Nt, and P contents. The rhizosphere soil collected after biochar amendment showed a higher abundance of tricalcium phosphate-solubilizing bacteria than the control soil without biochar. Overall, this study demonstrated that 2% maize-derived biochar positively affects halophyte plant growth and thus could be considered for potential use in the reclamation of degraded saline soil.Georg Forster Research FellowshipAlexander von Humboldt Foundatio

    The Integrated Effect of Microbial Inoculants and Biochar Types on Soil Biological Properties, and Plant Growth of Lettuce (Lactuca sativa L.)

    Get PDF
    Numerous reports confirm the positive effect of biochar application on soil properties and plant development. However, the interaction between root-associated beneficial microbes and different types of biochar is not well understood. The objective of this study was to evaluate the plant growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants. Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type. In summary, these findings provide new insights into the understanding of the interactions between biochar and microbial inoculants, which may affect lettuce growth and development.Peer Reviewe

    Interactive Effects of Biochar, Nitrogen, and Phosphorous on the Symbiotic Performance, Growth, and Nutrient Uptake of Soybean (Glycine max L.)

    Get PDF
    Numerous studies reported the positive effect of soil amendment with biochar on plant development. However, little is known about biochar and its interrelation with nitrogen (N) and phosphorous (P) additions and their impact on plant growth. We carried out greenhouse experiments to understand the interactive effects of nitrogen and phosphorus supply, as well as biochar amendment, on the symbiotic performance of soybean (Glycine max L.) with Bradyrhizobium japonicum, and plant growth and nutrient uptake. The biochar was produced from maize by heating at 600 °C for 30 min and used for pot experiments at an application rate of 2%. Plants were fertilized with two different concentrations of P (KH2PO4) and N (NH4NO3). Biochar application significantly increased the dry weight of soybean root and shoot biomass, by 34% and 42%, under low nitrogen and low phosphorus supply, respectively. Bradyrhizobium japonicum inoculation enhanced the dry weight of shoot biomass significantly, by 41% and 67%, in soil without biochar and with biochar addition, respectively. The nodule number was 19% higher in plants grown under low N combined with low or high P, than in high N combinations, while biochar application increased nodule number in roots. Moreover, biochar application increased N uptake of plants in all soil treatments with N or P supply, compared with B. japonicum-inoculated and uninoculated plants. A statistical difference in P uptake of plants between biochar and nutrient levels was observed with low N and high P supply in the soil. Our results show that the interactions between nitrogen, phosphorus, and biochar affect soybean growth by improving the symbiotic performance of B. japonicum and the growth and nutrition of soybean. We observed strong positive correlations between plant shoot biomass, root biomass, and N and P uptake. These data indicated that the combined use of biochar and low N, P application can be an effective approach in improving soybean growth with minimum nutrient input.Peer Reviewe

    Function-Based Rhizosphere Assembly along a Gradient of Desiccation in the Former Aral Sea

    Get PDF
    The desiccation of the Aral Sea represents one of the largest human-made environmental regional disasters. The salt- and toxin-enriched dried-out basin provides a natural laboratory for studying ecosystem functioning and rhizosphere assembly under extreme anthropogenic conditions. Here, we investigated the prokaryotic rhizosphere communities of the native pioneer plant Suaeda acuminata (C.A.Mey.) Moq. in comparison to bulk soil across a gradient of desiccation (5, 10, and 40 years) by metagenome and amplicon sequencing combined with quantitative PCR (qPCR) analyses. The rhizosphere effect was evident due to significantly higher bacterial abundances but less diversity in the rhizosphere compared to bulk soil. Interestingly, in the highest salinity (5 years of desiccation), rhizosphere functions were mainly provided by archaeal communities. Along the desiccation gradient, we observed a significant change in the rhizosphere microbiota, which was reflected by (i) a decreasing archaeon-bacterium ratio, (ii) replacement of halophilic archaea by specific plant-associated bacteria, i.e., Alphaproteobacteria and Actinobacteria, and (iii) an adaptation of specific, potentially plant-beneficial biosynthetic pathways. In general, both bacteria and archaea were found to be involved in carbon cycling and fixation, as well as methane and nitrogen metabolism. Analysis of metagenome-assembled genomes (MAGs) showed specific signatures for production of osmoprotectants, assimilatory nitrate reduction, and transport system induction. Our results provide evidence that rhizosphere assembly by cofiltering specific taxa with distinct traits is a mechanism which allows plants to thrive under extreme conditions. Overall, our findings highlight a function-based rhizosphere assembly, the importance of plant-microbe interactions in salinated soils, and their exploitation potential for ecosystem restoration approaches
    • …
    corecore