4 research outputs found

    The maize brown midrib6 (bm6) mutation encodes a functional GTP Cyclohydrolase1

    Get PDF
    Brown midrib mutations in maize (Zea mays L.) and sorghum (Sorghum bicolor L.) alter lignin composition and enhance cell wall digestibility. These mutations are prime candidates for silage breeding. Six brown midrib mutants are currently known, brown midrib1 (bm1) to brown midrib6 (bm6). The bm1 and bm3 mutations are being used commercially for silage. The underlying genes responsible for five of the six bm mutations in maize (bm1, bm2, bm3, bm4, and bm5) are known. Chen and co-workers (2012) characterized the bm6 mutation, demonstratingthat bm6 increases cell wall digestibility and physically mapped bm6 within a 180 kilobase region on chromosome 2. The present investigation utilized map-based cloning to identify the candidate gene responsible for the bm6 phenotype as GTP Cyclohydrolase1 (GCH1) and validated the candidate gene through reverse genetics. Orthologs of bm6 include at least one paralogous gene in maize on chromosome 10 and various homologs in other grasses and dicots. The discovery that GCH1 is  responsible for the maize bm6 phenotype suggests that GCH1 plays a role in the tetrahydrofolate biosynthetic process

    Maize Brittle stalk2

    No full text

    Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1.

    No full text
    Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR
    corecore