21 research outputs found
First Very Long Baseline Interferometry Detections at 870 μ m
The first very long baseline interferometry (VLBI) detections at 870 μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19 μas. The Allan deviation of the visibility phase at 870 μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870 μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time
First very long baseline interferometry detections at 870μm
The first very long baseline interferometry (VLBI) detections at 870 μm wavelength (345 GHz frequency) are
reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and
the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources
observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during
observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular
resolution, or fringe spacing, of 19 μas. The Allan deviation of the visibility phase at 870 μm is comparable to that
at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity
and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI
observations at 870 μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT,
will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event
horizons of supermassive black holes in both space and time.http://iopscience.iop.org/1538-3881PhysicsNon
The persistent shadow of the supermassive black hole of M 87 I. Observations, calibration, imaging, and analysis
Please read abstract in article.https://www.aanda.org/PhysicsNon
First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106 M ⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
The persistent shadow of the supermassive black hole of M 87
In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet
First Sagittarius A* Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
In a companion paper, we present the first spatially resolved polarized image of Sagittarius A* on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%–28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to ≈46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow
Design, development and recent experiments of the CIMPLE-PSI device
The CIMPLE-PSI laboratory in India's northeast corner has been engaged over the last decade in the development of advanced experimental systems for controlled plasma fusion-relevant plasma surface interaction (PSI) studies and material testing. The CIMPLE-PSI experimental device was commissioned recently, where a magnetized collimated helium plasma beam is produced under steady-state conditions inside a linear vacuum chamber, which can be made to interact with remotely placed material targets, under controlled experimental conditions. This paper reports on the design, development of the major sub-systems of this device and the performance of the integrated system. The peak helium ion flux and heat flux were measured as 10 m s and 5.1 MW m, respectively; this confirms that extreme ITER divertor-like parameters are successfully reproduced by this simulation device. Steady-state operation of the electromagnet allowed prolonged operation of the plasma leading to a very high fluence of 0.3 × 10 m, which may be enhanced further in the future. Tungsten samples were exposed in this device under helium plasma that had led to the formation of nanometer-sized tungsten fibre foam structures on the target. The technique of grazing incidence small angle x-ray scattering was successfully utilized to measure the average size of the helium bubbles remaining buried in the exposed sample and its variation with depth from the top of the surface