9 research outputs found

    Co-Loading of Ascorbic Acid and Tocopherol in Eudragit-Nutriosomes to Counteract Intestinal Oxidative Stress

    Get PDF
    The present study aimed at developing a new vesicular formulation capable of promoting the protective effect of ascorbic acid and tocopherol against intestinal oxidative stress damage, and their efficacy in intestinal wound healing upon oral administration. A pH-dependent copolymer (Eudragit® L100), a water-soluble prebiotic fibre (Nutriose® FM06), a phospholipid mixture (Lipoid S75), and two natural antioxidants (ascorbic acid and tocopherol) were combined to fabricate eudragit-nutriosomes by a simple, solvent-free procedure. The vesicles were spherical and oligolamellar, with some multicompartment structures in Eudragit-nutriosomes, small in size (~100 nm), with highly negative zeta potential. The effect of Eudragit® and Nutriose® on the stability on storage and in simulated gastrointestinal fluids were confirmed by the Turbiscan® technology and in vitro studies, respectively. Eudragit-nutriosomes exhibited a protective effect against H2O2-induced oxidative stress, and a proliferative effect in Caco-2 cells, as they provided the closure of the scratched area after 96 h of incubation. Keywords: Eudragit, Nutriose, phospholipid vesicles, antioxidant, intestinal wound healin

    Formulation of liposomes loading lentisk oil to ameliorate topical delivery, attenuate oxidative stress damage and improve cell migration in scratch assay

    Full text link
    Pistacia lentiscus L. is a sclerophyllous shrub capable of growing under harsh climatic conditions especially in the Mediterranean Basin. Different products can be obtained from this plant, such as essential oil, mastic gum or even fixed oil. The last is well known for its flavor which is mainly exploited in the food industry. Additionally, it has been traditionally used in the treatment of skin diseases, but, at the moment, any suitable formulation for skin delivery has been formulated and its biological effects was not deeply confirmed. Given that, in the present study, the lentisk oil has been formulated in liposomes at different concentrations (10, 20, 30 mg/ml) and their physicochemical, technological and main biological properties have been evaluated. Vesicles were prepared by using natural soy lecithin and a green and organic solvent free method, thus obtaining spherical, small (~ 118 nm), homogeneously dispersed (0.27) and highly negatively charged (~ -62 mV) vesicles. The used amount of oil loaded in liposomes (10, 20, 30 mg/ml) modulated the penetration ability of vesicles in the skin, favoring the deposition of the payload in the deeper strata. The loading in the vesicles potentiated the ability of oil to counteract the damaging effects caused by hydrogen peroxide in keratinocytes and fibroblasts and facilitate their migration in a cell monolayer lesion. Overall findings suggested that the incorporation of lentisk oil in liposomes made from soy lecithin can be an alternative and natural approach to exploit it in pharmaceutical ad cosmetical applications and manufacturing natural products suitable for the treatment of skin lesions. Keywords: Keratinocytes & fibroblasts; Liposomes; Pistacia lentiscus; Scratch assay; Skin permeation studies, confocal microscopy; Wound healing

    Effects of ethanol and diclofenac on the organization of hydrogenated phosphatidylcholine bilayer vesicles and their ability as skin carriers

    No full text
    In this study, the effects of ethanol and/or diclofenac on vesicle bilayer structure have been studied. Liposomes with hydrogenated soy phosphatidylcholine, cholesterol and two different concentrations of diclofenac sodium (5 and 10 mg/ml) were obtained. In addition, ethanol was mixed in the water phase at different concentrations (5, 10 and 20 % v/v) to obtain ethosomes. To characterize vesicles, rehological analysis were carried out to investigate the intervesicle interactions, while bilayer structure was evaluated by small-and wide-angle X-ray scattering. Finally, the ethanol and/or diclofenac concentration-dependent ability to improve diclofenac skin delivery was evaluated in vitro. The addition of 20 % ethanol and/or diclofenac led to solid-like ethosome dispersion due to the formation of a new intervesicle structure, as previously found in transcutol containing vesicle dispersions. However, when using 5-10 % of ethanol the induction to form vesicle interconnections was less evident but the simultaneous presence of the drug at the highest concentration facilitated this phenomenon. Ethosomes containing the highest amount of both, drug (10 mg/ml) and ethanol (20 % v/v), improved the drug deposition in the skin strata and in the receptor fluid up to 1.5-fold, relative to liposomes. Moreover this solid-like formulation can easily overcome drawbacks of traditional liquid liposome formulations which undergo a substantial loss at the application site

    Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin

    No full text
    Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellan-transfersomes obtained by an easy, scalable method. The vesicles were small in size (~107 nm) and monodispersed (P.I. â\u89¤ 0.24), forming a viscous system (~24 mPa/s) as compared to transfersomes (~1.6 mPa/s), as confirmed by rheological studies. Gellan was anchored to the bilayer domains through cholesterol, and the polymer chains were distributed onto the outer surface of the bilayer, thus forming a core-shell structure, as suggested by SAXS analyses. The optimal carrier ability of core-shell gellan-transfersomes was established by the high deposition of baicalin in the skin (~11% in the whole skin), especially in the deeper tissue (~8% in the dermis). Moreover, their ability to improve baicalin efficacy in anti-inflammatory and skin repair tests was confirmed in vivo in mice, providing the complete skin restoration and inhibiting all the studied inflammatory markers
    corecore