48 research outputs found
ON UKRAINIAN LABOR MARKET NEEDS IN MARKETERS
Asymmetric Incremental Sheet Forming (AISF) has been developed as a flexible process for low-volume production of sheet metal parts. In AISF, a part is obtained as the sum of localized plastic deformations produced by a simple forming tool that moves under CNC control. In spite of about 20 years of research and development, AISF has not had much industrial take-up yet. The main reason for this is that attempts to improve, among other limitations, the accuracy, speed and range of feasible geometries of the process by adapted process strategies has not brought about general solutions. This paper presents an overview of the current state of development of hybrid asymmetric incremental sheet forming processes at RWTH Aachen University. The goal of the development of hybrid ISF processes is to allow for a quantum leap of the capabilities of AISF in order to enable a broader industrial use of AISF. Two hybrid process variations of AISF are presented: stretch forming combined with ISF and laser-assisted AISF. It is shown that the combination of stretch forming and AISF can improve the time per part, sheet thickness distribution and accuracy of the final part. Laser-assisted AISF is shown to enable the flexible forming of non cold-workable materials such as magnesium and titanium alloys when the forming conditions are adapted to the temperature and strain rate dependent formability of the sheet metal. In addition, first results of the forming of hybrid aluminum-steel sheet metal are shown
Dextran-Coated Magnetic Supports Modified with a Biomimetic Ligand for IgG Purification
The authors thank the financial support from Fundacao para a Ciencia e a Tecnologia through Grant PEst-C/EQB/LA0006/2011 and contracts no. PTDC/EBB-BIO/102163/2008, PTDC/EBB-BIO/098961/2008, PTDC/EBB-BIO/118317/2010, SFRH/BD/72650/2010 for V.L.D, and Santander Totta Bank - Universidade Nova de Lisboa for the Scientific Award 2009/2010. The authors are grateful to Dr. Abid Hussain and M. Telma Barroso (REQUIMTE, FCT-UNL, Portugal) for the preparation of the synthetic affinity ligands, to Lonza Biologics, U.K. (Dr. Richard Alldread), and the Animal Cell Technology Unit of ITQB-UNL/IBET (Dr. Paula M Alves and Dr. Ana Teixeira) for providing the cells and the culture bulks and to Mr. Filipe Cardoso and Prof. Paulo Freitas (INESC-MN, Lisbon, Portugal) for the help with the VSM measurements.Dextran-coated iron oxide magnetic particles modified with ligand 22/8, a protein A mimetic ligand, were prepared and assessed for IgG purification. Dextran was chosen as the agent to modify the surface of magnetic particles by presenting a negligible level of nonspecific adsorption. For the functionalization of the particles with the affinity ligand toward antibodies, three methods have been explored. The optimum coupling method yielded a theoretical maximum capacity for human IgG calculated as 568 ± 33 mg/g and a binding affinity constant of 7.7 × 10⁴ M⁻¹. Regeneration, recycle and reuse of particles was also highly successful for five cycles with minor loss of capacity. Moreover, this support presented specificity and effectiveness for IgG adsorption and elution at pH 11 directly from crude extracts with a final purity of 95% in the eluted fraction.proofpublishe