42 research outputs found
Low utilization of health care services following screening for hypertension in Dar es Salaam (Tanzania): a prospective population-based study
Drug therapy in high-risk individuals has been advocated as an important strategy to reduce cardiovascular disease in low income countries. We determined, in a low-income urban population, the proportion of persons who utilized health services after having been diagnosed as hypertensive and advised to seek health care for further hypertension management. A population-based survey of 9254 persons aged 25-64 years was conducted in Dar es Salaam. Among the 540 persons with high blood pressure (defined here as BP >or= 160/95 mmHg) at the initial contact, 253 (47%) had high BP on a 4th visit 45 days later. Among them, 208 were untreated and advised to attend health care in a health center of their choice for further management of their hypertension. One year later, 161 were seen again and asked about their use of health services during the interval. Among the 161 hypertensive persons advised to seek health care, 34% reported to have attended a formal health care provider during the 12-month interval (63% public facility; 30% private; 7% both). Antihypertensive treatment was taken by 34% at some point of time (suggesting poor uptake of health services) and 3% at the end of the 12-month follow-up (suggesting poor long-term compliance). Health services utilization tended to be associated with older age, previous history of high BP, being overweight and non-smoking, but not with education or wealth. Lack of symptoms and cost of treatment were the reasons reported most often for not attending health care. Low utilization of health services after hypertension screening suggests a small impact of a patient-centered screen-and-treat strategy in this low-income population. These findings emphasize the need to identify and address barriers to health care utilization for non-communicable diseases in this setting and, indirectly, the importance of public health measures for primary prevention of these diseases
Proteomic analysis of urine in medication-overuse headache patients: possible relation with renal damages
Medication-overuse headache (MOH) is a chronic disorder associated with overuse of analgesic drugs, triptans, non-steroidal anti-inflammatory drugs (NSAIDs) or other acute headache compounds. Various epidemiologic investigations proved that different drug types could cause nephrotoxicity, particularly in chronic patients. The aim of the present work was to analyze, by a proteomic approach, the urinary protein profiles of MOH patients focusing on daily use of NSAIDs, mixtures and triptans that could reasonably be related to potential renal damage. We selected 43 MOH patients overusing triptans (n = 18), NSAIDs (n = 11), and mixtures (n = 14), for 2–30 years with a mean daily analgesic intake of 1.5 ± 0.9 doses, and a control group composed of 16 healthy volunteers. Urine proteins were analyzed by mono-dimensional gel electrophoresis and identified by mass spectrometry analysis. Comparing the proteomic profiles of patients and controls, we found a significantly different protein expression, especially in the NSAIDs group, in which seven proteins resulted over-secreted from kidney (OR = 49, 95% CI 2.53–948.67 vs. controls; OR = 11.6, 95% CI 0.92–147.57 vs. triptans and mixtures groups). Six of these proteins (uromodulin, α-1-microglobulin, zinc-α-2-glycoprotein, cystatin C, Ig-kappa-chain, and inter-α-trypsin heavy chain H4) were strongly correlated with various forms of kidney disorders. Otherwise, in mixtures and in triptans abusers, only three proteins were potentially associated to pathological conditions (OR = 4.2, 95% CI 0.33–53.12, vs. controls). In conclusion, this preliminary proteomic study allowed us to define the urinary protein pattern of MOH patients that is related to the abused drug. According with the obtained results, we believe that the risk of nephrotoxicity should be considered particularly in MOH patients who abuse of NSAIDs
Determinants of the urinary and serum metabolome in children from six European populations
Background Environment and diet in early life can affect development and health throughout the life course. Metabolic phenotyping of urine and serum represents a complementary systems-wide approach to elucidate environment–health interactions. However, large-scale metabolome studies in children combining analyses of these biological fluids are lacking. Here, we sought to characterise the major determinants of the child metabolome and to define metabolite associations with age, sex, BMI and dietary habits in European children, by exploiting a unique biobank established as part of the Human Early-Life Exposome project (http://www.projecthelix.eu). Methods Metabolic phenotypes of matched urine and serum samples from 1192 children (aged 6–11) recruited from birth cohorts in six European countries were measured using high-throughput 1H nuclear magnetic resonance (NMR) spectroscopy and a targeted LC-MS/MS metabolomic assay (Biocrates AbsoluteIDQ p180 kit). Results We identified both urinary and serum creatinine to be positively associated with age. Metabolic associations to BMI z-score included a novel association with urinary 4-deoxyerythronic acid in addition to valine, serum carnitine, short-chain acylcarnitines (C3, C5), glutamate, BCAAs, lysophosphatidylcholines (lysoPC a C14:0, lysoPC a C16:1, lysoPC a C18:1, lysoPC a C18:2) and sphingolipids (SM C16:0, SM C16:1, SM C18:1). Dietary-metabolite associations included urinary creatine and serum phosphatidylcholines (4) with meat intake, serum phosphatidylcholines (12) with fish, urinary hippurate with vegetables, and urinary proline betaine and hippurate with fruit intake. Population-specific variance (age, sex, BMI, ethnicity, dietary and country of origin) was better captured in the serum than in the urine profile; these factors explained a median of 9.0% variance amongst serum metabolites versus a median of 5.1% amongst urinary metabolites. Metabolic pathway correlations were identified, and concentrations of corresponding metabolites were significantly correlated (r > 0.18) between urine and serum. Conclusions We have established a pan-European reference metabolome for urine and serum of healthy children and gathered critical resources not previously available for future investigations into the influence of the metabolome on child health. The six European cohort populations studied share common metabolic associations with age, sex, BMI z-score and main dietary habits. Furthermore, we have identified a novel metabolic association between threonine catabolism and BMI of children