1,228 research outputs found

    Influence of external magnetic fields on growth of alloy nanoclusters

    Full text link
    Kinetic Monte Carlo simulations are performed to study the influence of external magnetic fields on the growth of magnetic fcc binary alloy nanoclusters with perpendicular magnetic anisotropy. The underlying kinetic model is designed to describe essential structural and magnetic properties of CoPt_3-type clusters grown on a weakly interacting substrate through molecular beam epitaxy. The results suggest that perpendicular magnetic anisotropy can be enhanced when the field is applied during growth. For equilibrium bulk systems a significant shift of the onset temperature for L1_2 ordering is found, in agreement with predictions from Landau theory. Stronger field induced effects can be expected for magnetic fcc-alloys undergoing L1_0 ordering.Comment: 10 pages, 3 figure

    ASK/PSK-correspondence and the r-map

    Get PDF
    We formulate a correspondence between affine and projective special K\"ahler manifolds of the same dimension. As an application, we show that, under this correspondence, the affine special K\"ahler manifolds in the image of the rigid r-map are mapped to one-parameter deformations of projective special K\"ahler manifolds in the image of the supergravity r-map. The above one-parameter deformations are interpreted as perturbative α′\alpha'-corrections in heterotic and type-II string compactifications with N=2N=2 supersymmetry. Also affine special K\"ahler manifolds with quadratic prepotential are mapped to one-parameter families of projective special K\"ahler manifolds with quadratic prepotential. We show that the completeness of the deformed supergravity r-map metric depends solely on the (well-understood) completeness of the undeformed metric and the sign of the deformation parameter

    Boundary lubrication with a glassy interface

    Full text link
    Recently introduced constitutive equations for the rheology of dense, disordered materials are investigated in the context of stick-slip experiments in boundary lubrication. The model is based on a generalization of the shear transformation zone (STZ) theory, in which plastic deformation is represented by a population of mesoscopic regions which may undergo non affine deformations in response to stress. The generalization we study phenomenologically incorporates the effects of aging and glassy relaxation. Under experimental conditions associated with typical transitions from stick-slip to steady sliding and stop start tests, these effects can be dominant, although the full STZ description is necessary to account for more complex, chaotic transitions

    Acoustic radiation controls friction: Evidence from a spring-block experiment

    Full text link
    Brittle failures of materials and earthquakes generate acoustic/seismic waves which lead to radiation damping feedbacks that should be introduced in the dynamical equations of crack motion. We present direct experimental evidence of the importance of this feedback on the acoustic noise spectrum of well-controlled spring-block sliding experiments performed on a variety of smooth surfaces. The full noise spectrum is quantitatively explained by a simple noisy harmonic oscillator equation with a radiation damping force proportional to the derivative of the acceleration, added to a standard viscous term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Re-entrant hidden order at a metamagnetic quantum critical end point

    Get PDF
    Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T reveal that the hidden order phase is destroyed before appearing in the form of a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant electron metamagnetism at higher temperatures suggests that the re-entrant phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a systematic error in the field calibration has been fixed since the original submission of this manuscrip

    Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis.

    Get PDF
    The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior
    • …
    corecore