29 research outputs found

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    Gastric inhibitory polypeptide receptor: association analyses for obesity of several polymorphisms in large study groups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric inhibitory polypeptide (GIP) is postulated to be involved in type 2 diabetes mellitus and obesity. It exerts its function through its receptor, GIPR. We genotyped three <it>GIPR </it>SNPs (rs8111428, rs2302382 and rs1800437) in German families with at least one obese index patient, two case-control studies and two cross-sectional population-based studies.</p> <p>Methods</p> <p>Genotyping was performed by MALDI-TOF, ARMS-PCR and RFLP. The family-study: 761 German families with at least one extremely obese child or adolescent (n = 1,041) and both parents (n = 1,522). Case-control study: (a) German obese children (n = 333) and (b) obese adults (n = 987) in comparison to 588 adult lean controls. The two cross-sectional population-based studies: KORA (n = 8,269) and SHIP (n = 4,310).</p> <p>Results</p> <p>We detected over-transmission of the A-allele of rs2302382 in the German families (p<sub>TDT-Test </sub>= 0.0089). In the combined case-control sample, we estimated an odd ratio of 1.54 (95%CI 1.09;2.19, p<sub>CA-Test </sub>= 0.014) for homozygotes of the rs2302382 A-allele compared to individuals with no A-allele. A similar trend was found in KORA where the rs2302382 A-allele led to an increase of 0.12 BMI units (p = 0.136). In SHIP, however, the A-allele of rs2302382 was estimated to contribute an average decrease of 0.27 BMI units (p-value = 0.031).</p> <p>Conclusion</p> <p>Our data suggest a potential relevance of <it>GIPR </it>variants for obesity. However, additional studies are warranted in light of the conflicting results obtained in one of the two population-based studies.</p

    Meta-Analysis of the INSIG2 Association with Obesity Including 74,345 Individuals: Does Heterogeneity of Estimates Relate to Study Design?

    Get PDF
    The INSIG2 rs7566605 polymorphism was identified for obesity (BMI≥30 kg/m2) in one of the first genome-wide association studies, but replications were inconsistent. We collected statistics from 34 studies (n = 74,345), including general population (GP) studies, population-based studies with subjects selected for conditions related to a better health status (‘healthy population’, HP), and obesity studies (OB). We tested five hypotheses to explore potential sources of heterogeneity. The meta-analysis of 27 studies on Caucasian adults (n = 66,213) combining the different study designs did not support overall association of the CC-genotype with obesity, yielding an odds ratio (OR) of 1.05 (p-value = 0.27). The I2 measure of 41% (p-value = 0.015) indicated between-study heterogeneity. Restricting to GP studies resulted in a declined I2 measure of 11% (p-value = 0.33) and an OR of 1.10 (p-value = 0.015). Regarding the five hypotheses, our data showed (a) some difference between GP and HP studies (p-value = 0.012) and (b) an association in extreme comparisons (BMI≥32.5, 35.0, 37.5, 40.0 kg/m2 versus BMI<25 kg/m2) yielding ORs of 1.16, 1.18, 1.22, or 1.27 (p-values 0.001 to 0.003), which was also underscored by significantly increased CC-genotype frequencies across BMI categories (10.4% to 12.5%, p-value for trend = 0.0002). We did not find evidence for differential ORs (c) among studies with higher than average obesity prevalence compared to lower, (d) among studies with BMI assessment after the year 2000 compared to those before, or (e) among studies from older populations compared to younger. Analysis of non-Caucasian adults (n = 4889) or children (n = 3243) yielded ORs of 1.01 (p-value = 0.94) or 1.15 (p-value = 0.22), respectively. There was no evidence for overall association of the rs7566605 polymorphism with obesity. Our data suggested an association with extreme degrees of obesity, and consequently heterogeneous effects from different study designs may mask an underlying association when unaccounted for. The importance of study design might be under-recognized in gene discovery and association replication so far

    Bi-allelic and tri-allelic 5-HTTLPR polymorphisms and triptan non-response in cluster headache.

    No full text
    International audienceBACKGROUND: Triptans are only effective in terminating cluster headache (CH) attacks in 70-80% of patients. Pharmacogenetic aspects of the serotonin metabolism, specifically variation in the 5-HTTLPR may be involved. METHODS: Genetic association study in a well-defined cohort of 148 CH patients with information on drug response to triptans. CH was diagnosed according to the criteria of the International Headache Society. Genotypes of the 43-bp insdel (rs4795541) and A > G (rs25531) polymorphisms in the 5-HTTLPR promoter region were detected by restriction fragment length polymorphism analysis. We used logistic regression analysis to investigate the association between bi-allelic and tri-allelic genotypes and triptan non-response with genotype models. RESULTS: Mean age at study entry among patients was 44.6 ± 10.5 years, 77.7% were men. The genotype distribution both for the bi-allelic and the tri-allelic polymorphism was in Hardy-Weinberg equilibrium. We did not find an association of the bi-allelic polymorphism with triptan non-response. While the effect estimates for the S variant of the tri-allelic polymorphisms suggested increased odds of triptan non-response in CH patients (multivariable-adjusted odds ratio [95% confidence interval]: L*L* genotype-reference; L*S* genotype-1.33 [0.53-3.32]; S*S* genotype-1.46 [0.54-3.98]), the results were not statistically significant. CONCLUSIONS: Data from our study do not indicate a role of bi-allelic and tri-allelic genotypes of the 5-HTTLPR polymorphism in triptan non-response in CH

    The human G protein β4 subunit: gene structure, expression, Gγ and effector interaction

    Get PDF
    AbstractThe aim of this study was the characterization of the human Gβ4 subunit of heterotrimeric G proteins. Human Gβ4 is widely expressed. Its gene is located on chromosome 3 with a genomic structure indistinguishable from that of the genes of Gβ1 to Gβ3, but entirely different from Gβ5. In vitro translation co-precipitation analyses revealed that Gβ4 can form stable dimers with Gγ1, Gγ2, Gγ3, Gγ4, Gγ5, Gγ7, Gγ10, Gγ11, Gγ12, and Gγ13, dimers which were also able to stimulate phospholipase β2

    Identification and characterization of G beta 3s2, a novel splice variant of the G-protein beta 3 subunit.

    No full text
    The T-allele of a polymorphism (C825T) in the gene for the G-protein beta 3 subunit (GNB3) is associated with cardiovascular and metabolic disorders, distinct cellular features and altered drug responses. The molecular mechanisms that give rise to this complex phenotype have been linked to the occurrence of G beta 3s, a splice variant of GNB3. G beta 3s is predominantly expressed in cells with the 825T-allele. In the present study we describe the identification and characterization of an additional G beta 3 splice variant referred to as G beta 3s2. Its mRNA is expressed in heart, blood cells and tumour tissue, and its expression is also tightly associated with the GNB3 825T-allele. G beta 3s2 is generated by alternative splicing using non-canonical splice sites. G beta subunits belong to the family of propeller proteins and consist of seven regular propeller blades. Transcripts for G beta 3s2 are lacking 129 bp of the coding sequence of the wild-type G beta 3 protein. Thus the predicted structure consists of only six propeller blades, which resembles the structure of G beta 3s. Co-immunoprecipitation analyses indicated that G beta 3s2 dimerizes with different G gamma subunits, e.g. G gamma 5, G gamma 8(C) and G gamma 12. In Sf9 insect cells, expression of G beta 3s2 together with G gamma 12 enhances receptor-stimulated activation of G alpha(i2). Expression of G beta 3s2 in mammalian cells activated the mitogen-activated protein kinase cascade. Together, these results suggest that G beta 3s2 is a biologically active G beta variant which may play a role in the manifestation of the complex phenotype associated with the 825T-allele
    corecore