56 research outputs found

    Influence of alkaline modification on adsorption properties of aluminum oxide

    Get PDF
    In this work the adsorption capacity of samples A-2-9С, A-2-Na-9С, A-2-K-9С was studied. It was found that alkaline modification leads to an increase in the efficiency of aluminum oxide dehydrators

    Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients

    Get PDF
    Mutations in the filamin C gene (FLNC) cause a myofibrillar myopathy (MFM), morphologically characterized by focal myofibrillar destruction and abnormal accumulation of several proteins within skeletal muscle fibres. We studied 31 patients from four German families to evaluate the phenotype of filaminopathy. All patients harboured the same p.W2710X mutation in FLNC. Haplotype analysis suggested a founder mutation in these German filaminopathy families. The mean age at onset of clinical symptoms was 44 +/− 6 years (range, 24-57 years). Slowly progressive muscle weakness was mostly pronounced proximally, initially affecting the lower extremities and involving the upper extremities in the course of disease progression, similar to the distribution of weakness seen in limb-girdle muscular dystrophies (LGMD). Patients frequently developed respiratory muscle weakness. About one-third of the patients showed cardiac abnormalities comprising conduction blocks, tachycardia, diastolic dysfunction and left ventricular hypertrophy indicating a cardiac involvement in filaminopathy. Serum creatine kinase levels varied from normal up to 10-fold of the upper limit. Magnetic resonance imaging studies showed a rather homogenous pattern of muscle involvement in the lower extremities differing from that in other types of MFM. Myopathological features included perturbation of myofibrillar alignment, accumulation of granulofilamentous material similar to that seen in primary desminopathies and abnormal intracellular protein deposits typical of MFM. Decreased activities of oxidative enzymes and fibre hypertrophy seem to be early features, whereas dystrophic changes were present in advanced stages of filaminopathy. Rimmed vacuoles were detected in only a few cases. The intracellular aggregates were composed of a variety of proteins including filamin C, desmin, myotilin, Xin, dystrophin and sarcoglycans. Therapy is so far limited to symptomatic treatment. The German filaminopathy cohort, the largest group of patients studied so far, shares phenotypic features with LGMD and presents with characteristic histopathological findings of MF

    Xirp Proteins Mark Injured Skeletal Muscle in Zebrafish

    Get PDF
    Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7+ cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations

    Mapping of a Myosin-binding Domain and a Regulatory Phosphorylation Site in M-Protein, a Structural Protein of the Sarcomeric M Band

    No full text
    The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling

    Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein

    No full text
    Assembly of muscle sarcomeres is a complex dynamic process and involves a large number of proteins. A growing number of these have regulatory functions and are transiently present in the myofibril. We show here that the novel tubulin-associated RING/B-box protein MURF2 associates transiently with microtubules, myosin and titin during sarcomere assembly. During sarcomere assembly, MURF2 first associates with microtubules at the exclusion of tyrosinated tubulin. Then, MURF2-labelled microtubules associate transiently with sarcomeric myosin and later with A-band titin when non-striated myofibrils differentiate into mature sarcomeres. Finally, MURF2 labelled microtubules disappear from the sarcomere after the incorporation of myosin filaments and the elongation of titin. This suggests that the incorporation of myosin into nascent sarcomeres and the elongation of titin require an active, microtubule-dependent transport process and that MURF2- associated microtubules play a role in the alignment and extension of nascent sarcomeres. MURF2 is expressed in at least four isoforms, of which a 27 kDa isoform is cardiac specific. A C-terminal isoform is generated by alternative reading frame use, a novelty in muscle proteins. In mature cardiac sarcomeres, endogenous MURF2 can associate with the M-band, and is translocated to the nucleus. MURF2 can therefore act as a transient adaptor between microtubules, titin and nascent myosin filaments, as well as being involved in signalling from the sarcomere to the nucleus
    corecore