56 research outputs found
Recommended from our members
Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction
The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have been compared and exhibit excellent agreement
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
We present observations of 10 type Ia supernovae (SNe Ia) between 0.16 < z <
0.62. With previous data from our High-Z Supernova Search Team, this expanded
set of 16 high-redshift supernovae and 34 nearby supernovae are used to place
constraints on the Hubble constant (H_0), the mass density (Omega_M), the
cosmological constant (Omega_Lambda), the deceleration parameter (q_0), and the
dynamical age of the Universe (t_0). The distances of the high-redshift SNe Ia
are, on average, 10% to 15% farther than expected in a low mass density
(Omega_M=0.2) Universe without a cosmological constant. Different light curve
fitting methods, SN Ia subsamples, and prior constraints unanimously favor
eternally expanding models with positive cosmological constant (i.e.,
Omega_Lambda > 0) and a current acceleration of the expansion (i.e., q_0 < 0).
With no prior constraint on mass density other than Omega_M > 0, the
spectroscopically confirmed SNe Ia are consistent with q_0 <0 at the 2.8 sigma
and 3.9 sigma confidence levels, and with Omega_Lambda >0 at the 3.0 sigma and
4.0 sigma confidence levels, for two fitting methods respectively. Fixing a
``minimal'' mass density, Omega_M=0.2, results in the weakest detection,
Omega_Lambda>0 at the 3.0 sigma confidence level. For a flat-Universe prior
(Omega_M+Omega_Lambda=1), the spectroscopically confirmed SNe Ia require
Omega_Lambda >0 at 7 sigma and 9 sigma level for the two fitting methods. A
Universe closed by ordinary matter (i.e., Omega_M=1) is ruled out at the 7
sigma to 8 sigma level. We estimate the size of systematic errors, including
evolution, extinction, sample selection bias, local flows, gravitational
lensing, and sample contamination. Presently, none of these effects reconciles
the data with Omega_Lambda=0 and q_0 > 0.Comment: 36 pages, 13 figures, 3 table files Accepted to the Astronomical
Journa
A Review of the Federal Guidelines That Inform and Influence Relationships Between Physicians and Industry
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73492/1/j.1553-2712.2009.00460.x.pd
Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type Ia Supernova
We have measured the rest-frame B,V, and I-band light curves of a
high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using HST and
ground-based near-infrared detectors.
A goal of this study is the measurement of the color excess, E_{B-I}, which
is a sensitive indicator of interstellar or intergalactic dust which could
affect recent cosmological measurements from high-redshift SNe Ia. Our
observations disfavor a 30% opacity of SN Ia visual light by dust as an
alternative to an accelerating Universe. This statement applies to both
Galactic-type dust
(rejected at the 3.4 sigma confidence level) and greyer dust (grain size >
0.1 microns; rejected at the 2.3 to 2.6 sigma confidence level) as proposed by
Aguirre (1999). The rest-frame -band light cur ve shows the secondary
maximum a month after B maximum typical of nearby SNe Ia of normal luminosi ty,
providing no indication of evolution as a function of redshift out to z~0.5. A
n expanded set of similar observations could improve the constraints on any
contribution of extragalactic dust to the dimming of high-redshift SNe Ia.Comment: Accepted to the Astrophysical Journal, 12 pages, 2 figure
Supernova Limits on the Cosmic Equation of State
We use Type Ia supernovae studied by the High-Z Supernova Search Team to
constrain the properties of an energy component which may have contributed to
accelerating the cosmic expansion. We find that for a flat geometry the
equation of state parameter for the unknown component, alpha_x=P_x/rho_x, must
be less than -0.55 (95% confidence) for any value of Omega_m and is further
limited to alpha_x<-0.60 (95%) if Omega_m is assumed to be greater than 0.1 .
These values are inconsistent with the unknown component being topological
defects such as domain walls, strings, or textures. The supernova data are
consistent with a cosmological constant (alpha_x=-1) or a scalar field which
has had, on average, an equation of state parameter similar to the cosmological
constant value of -1 over the redshift range of z=1 to the present. Supernova
and cosmic microwave background observations give complementary constraints on
the densities of matter and the unknown component. If only matter and vacuum
energy are considered, then the current combined data sets provide direct
evidence for a spatially flat Universe with Omega_tot=Omega_m+Omega_Lambda =
0.94 +/- 0.26 (1-sigma).Comment: Accepted for publication in ApJ, 3 figure
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications
We present observations of the Type Ia supernovae (SNe) 1999M, 1999N, 1999Q,
1999S, and 1999U, at redshift z~0.5. They were discovered in early 1999 with
the 4.0~m Blanco telescope at Cerro Tololo Inter-American Observatory by the
High-z Supernova Search Team (HZT) and subsequently followed with many
ground-based telescopes. SNe 1999Q and 1999U were also observed with the Hubble
Space Telescope. We computed luminosity distances to the new SNe using two
methods, and added them to the high-z Hubble diagram that the HZT has been
constructing since 1995.
The new distance moduli confirm the results of previous work. At z~0.5,
luminosity distances are larger than those expected for an empty universe,
implying that a ``Cosmological Constant,'' or another form of ``dark energy,''
has been increasing the expansion rate of the Universe during the last few
billion years.Comment: 68 pages, 22 figures. Scheduled for the 01 February 2006 issue of
Ap.J. (v637
Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico
Copyright 2012 by the American Geophysical UnionMesozooplankton (>200 ĂÂŒm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/VDeepwater Horizon blowout. Mesozooplankton contained 0.03ĂąâŹâ97.9 ng gĂąËâ1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem
The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae
The High-Z Supernova Search is an international collaboration to discover and monitor Type Ia supernovae (SNe Ia) at z > 0.2 with the aim of measuring cosmic deceleration and global curvature. Our collaboration has pursued a basic understanding of supernovae in the nearby universe, discovering and observing a large sample of objects and developing methods to measure accurate distances with SNe Ia. This paper describes the extension of this program to z >= 0.2, outlining our search techniques and follow-up program. We have devised high-throughput filters that provide accurate two-color rest frame B and V light curves of SNe Ia, enabling us to produce precise, extinction-corrected luminosity distances in the range 0.25 < z < 0.55. Sources of systematic error from K-corrections, extinction, selection effects, and evolution are investigated, and their effects estimated. We present photometric and spectral observations of SN 1995K, our program's first supernova (SN), and use the data to obtain a precise measurement of the luminosity distance to the z = 0.479 host galaxy. This object, when combined with a nearby sample of SNe, yields an estimate for the matter density of the universe of ΩM=-0.2+1.0-0.8 if ΩΠ= 0. For a spatially flat universe composed of normal matter and a cosmological constant, we find ΩM=0.4+0.5-0.4, ΩÎ=0.6+0.4-0.5. We demonstrate that with a sample of ~30 objects, we should be able to determine relative luminosity distances over the range 0 < z < 0.5 with sufficient precision to measure ΩM with an uncertainty of +/-0.2.We wish to thank Ed Carter at NOAO for tracing the
redshifted Ălter set. A. V. F. acknowledges support from
NSF grant AST 94-17213. R. P. K. acknowledges support
from NSF grants AST 95-28899 and AST 96 17058 and
thanks the Institute for Theoretical Physics, University of
California, Santa Barbara, for their generous hospitality. A.
G. R. acknowledges support from the Miller Institute for
Basic Research in Science, University of California, Berkeley. SN research at UW is supported by the NSF and
NASA. C. W. S. acknowledges the generous support of the Seaver Institute and the Packard Foundation. M. H.
acknowledges support provided for this work by the NSF
through grant number GF-1002-97 from the Association of
Universities for Research in Astronomy, Inc., under NSF
Cooperative Agreement No. AST 89-47990, and from Fundacio n Andes under project C-12984; M. H. also acknowledges support by Ca tedra Presidencial de Ciencias
1996-1997. Partial support for A. C. was provided by the
NSF through grant GF-1001-95 from AURA, Inc., under
NSF cooperative agreement AST 89-47990, and from Fundacio n Antorchas Argentina under project A-13313. This
research used IRAF, an astronomical reduction package
distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities
for Research in Astronomy, Inc. (AURA), under cooperative agreement with the NSF
The AURORA Study: A Longitudinal, Multimodal Library of Brain Biology and Function after Traumatic Stress Exposure
Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among civilian trauma survivors and military veterans. These APNS, as traditionally classified, include posttraumatic stress, postconcussion syndrome, depression, and regional or widespread pain. Traditional classifications have come to hamper scientific progress because they artificially fragment APNS into siloed, syndromic diagnoses unmoored to discrete components of brain functioning and studied in isolation. These limitations in classification and ontology slow the discovery of pathophysiologic mechanisms, biobehavioral markers, risk prediction tools, and preventive/treatment interventions. Progress in overcoming these limitations has been challenging because such progress would require studies that both evaluate a broad spectrum of posttraumatic sequelae (to overcome fragmentation) and also perform in-depth biobehavioral evaluation (to index sequelae to domains of brain function). This article summarizes the methods of the Advancing Understanding of RecOvery afteR traumA (AURORA) Study. AURORA conducts a large-scale (n = 5000 target sample) in-depth assessment of APNS development using a state-of-the-art battery of self-report, neurocognitive, physiologic, digital phenotyping, psychophysical, neuroimaging, and genomic assessments, beginning in the early aftermath of trauma and continuing for 1 year. The goals of AURORA are to achieve improved phenotypes, prediction tools, and understanding of molecular mechanisms to inform the future development and testing of preventive and treatment interventions
- âŠ