67 research outputs found

    Intraduodenal Administration of Intact Pea Protein Effectively Reduces Food Intake in Both Lean and Obese Male Subjects

    Get PDF
    BACKGROUND: Human duodenal mucosa secretes increased levels of satiety signals upon exposure to intact protein. However, after oral protein ingestion, gastric digestion leaves little intact proteins to enter the duodenum. This study investigated whether bypassing the stomach, through intraduodenal administration, affects hormone release and food-intake to a larger extent than orally administered protein in both lean and obese subjects. METHODS: Ten lean (BMI:23.0±0.7 kg/m²) and ten obese (BMI:33.4±1.4 kg/m²) healthy male subjects were included. All subjects randomly received either pea protein solutions (250 mg/kg bodyweight in 0.4 ml/kg bodyweight of water) or placebo (0.4 ml/kg bodyweight of water), either orally or intraduodenally via a naso-duodenal tube. Appetite-profile, plasma GLP-1, CCK, and PYY concentrations were determined over a 2 h period. After 2 h, subjects received an ad-libitum meal and food-intake was recorded. RESULTS: CCK levels were increased at 10(p<0.02) and 20(p<0.01) minutes after intraduodenal protein administration (IPA), in obese subjects, compared to lean subjects, but also compared to oral protein administration (OPA)(p<0.04). GLP-1 levels increased after IPA in obese subjects after 90(p<0.02) to 120(p<0.01) minutes, compared to OPA. Food-intake was reduced after IPA both in lean and obese subjects (-168.9±40 kcal (p<0.01) and -298.2±44 kcal (p<0.01), respectively), compared to placebo. Also, in obese subjects, food-intake was decreased after IPA (-132.6±42 kcal; p<0.01), compared to OPA. CONCLUSIONS: Prevention of gastric proteolysis through bypassing the stomach effectively reduces food intake, and seems to affect obese subjects to a greater extent than lean subjects. Enteric coating of intact protein supplements may provide an effective dietary strategy in the prevention/treatment of obesity

    V392 Persei: a γ-ray bright nova eruption from a known dwarf nova

    Get PDF
    V392 Persei is a known dwarf nova (DN) that underwent a classical nova eruption in 2018. Here we report ground-based optical, Swift UV and X-ray, and Fermi-LAT γ-ray observations following the eruption for almost three years. V392 Per is one of the fastest evolving novae yet observed, with a t2 decline time of 2 days. Early spectra present evidence for multiple and interacting mass ejections, with the associated shocks driving both the γ-ray and early optical luminosity. V392 Per entered Sun-constraint within days of eruption. Upon exit, the nova had evolved to the nebular phase, and we saw the tail of the super-soft X-ray phase. Subsequent optical emission captured the fading ejecta alongside a persistent narrow line emission spectrum from the accretion disk. Ongoing hard X-ray emission is characteristic of a standing accretion shock in an intermediate polar. Analysis of the optical data reveals an orbital period of 3.230 ± 0.003 days, but we see no evidence for a white dwarf (WD) spin period. The optical and X-ray data suggest a high mass WD, the pre-nova spectral energy distribution (SED) indicates an evolved donor, and the post-nova SED points to a high mass accretion rate. Following eruption, the system has remained in a nova-like high mass transfer state, rather than returning to the pre-nova DN low mass transfer configuration. We suggest that this high state is driven by irradiation of the donor by the nova eruption. In many ways, V392 Per shows similarity to the well-studied nova and DN GK Persei

    Protein-induced satiety: Effects and mechanisms of different proteins

    No full text
    © 2008 Elsevier Inc. All rights reserved.Relatively high protein diets, i.e. diets that maintain the absolute number of grams of protein ingested as compared to before dieting, are a popular strategy for weight loss and weight maintenance. Research into multiple mechanisms regulating body weight has focused on the effects of different quantities and types of dietary protein. Satiety and energy expenditure are important in protein-enhanced weight loss and weight maintenance. Protein-induced satiety has been shown acutely, with single meals, with contents of 25% to 81% of energy from protein in general or from specific proteins, while subsequent energy intake reduction was significant. Protein-induced satiety has been shown with high protein ad libitum diets, lasting from 1 to 6 days, up to 6 months. Also significantly greater weight loss has been observed in comparison with control. Mechanisms explaining protein-induced satiety are nutrient-specific, and consist mainly of synchronization with elevated amino acid concentrations. Different proteins cause different nutrient related responses of (an)orexigenic hormones. Protein-induced satiety coincides with a relatively high GLP-1 release, stimulated by the carbohydrate content of the diet, PYY release, while ghrelin does not seem to be especially affected, and little information is available on CCK. Protein-induced satiety is related to protein-induced energy expenditure. Finally, protein-induced satiety appears to be of vital importance for weight loss and weight maintenance. With respect to possible adverse events, chronic ingestion of large amounts of sulphur-containing amino acids may have an indirect effect on blood pressure by induction of renal subtle structural damage, ultimately leading to loss of nephron mass, and a secondary increase in blood pressure. The established synergy between obesity and low nephron number on induction of high blood pressure and further decline of renal function identifies subjects with obesity, metabolic syndrome and diabetes mellitus II as particularly susceptible groups.M. Veldhorst, A. Smeets, S. Soenen, A. Hochstenbach-Waelen, R. Hursel, K. Diepvens, M. Lejeune, N. Luscombe-Marsh, M. Westerterp-Planteng

    Total and specific dietary polyphenol intakes and 6-year anthropometric changes in a middle-aged general population cohort

    No full text
    International audienceBACKGROUND:Dietary polyphenols are suggested anti-obesogenic agents. Prospective evidence in general populations of an association between polyphenol intakes and anthropometry is lacking.OBJECTIVE:To assess the associations between dietary polyphenol intakes and changes in body mass index (BMI) and waist circumference (WC) over a 6-year period.METHODS:Individual intakes of 264 different polyphenols (mg/day) were estimated using the Phenol-Explorer database and the mean of 6-17 24-h dietary records collected in 1994-1996. BMI in kg/m2 and WC in cm were measured in 1995-1996, 1998-1999 and 2001-2002. Linear mixed effect models allowed for the assessment of longitudinal associations between energy adjusted quartiles of total polyphenol intake as well as intake of 15 polyphenol classes and changes of these respective polyphenol classes in anthropometry over the 6 years of follow-up. Adjustment variables included sex, age, socio-economic status, lifestyle, dietary intakes and health status.RESULTS:Participants in the highest quartile of intake of flavanones (BMI change: -0.28 (-0.43; -0.13), P=0.009), flavones (BMI change: -0.29 (-0.44; -0.14), P=0.008), and lignans (BMI change: -0.28 (-1.63; -0.09), P=0.01) experienced a less notable increase in BMI over time compared to their counterparts in the bottom quartile of intake of the respective polyphenol classes. Participants in the highest quartile of intake of flavanones (WC change: -1.39 (-2.02; -0.92), P=0.001), flavones (WC change: -1.57 (-2.32; -0.92), P=0.001), hydroxycinnamic acids (WC change: -1.27 (-1.92; -0.63), P=0.01), lignans (WC change: -1.16 (-1.80; -0.51), P=0.006) and total polyphenol intake (WC change: -1.39 (-2.05; -0.74), P=0.001) experienced a less notable increase in WC over time compared to their counterparts in the bottom quartile of intake of the respective polyphenols.CONCLUSIONS:Dietary polyphenol intakes may help reduce weight gain over time in the general population. This could have important public health implications because moderate increases in BMI and WC over time have been shown to increase disease risk
    corecore