104 research outputs found

    The Yeast Aac2 Protein Exists in Physical Association with the Cytochrome \u3cem\u3ebc\u3c/em\u3e\u3csub\u3e1\u3c/sub\u3e-COX Supercomplex and the TIM23 Machinery

    Get PDF
    The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (Saccharomyces cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome c reductase (cytochrome bc1)-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity-purified with other AAC proteins. Copurification of the Aac2 protein with the TIM23 machinery can occur independently of its association with the fully assembled cytochrome bc1-COX supercomplex. In the absence of the Aac2 protein, the assembly of the cytochrome bc1-COX supercomplex is perturbed, whereby a decrease in the III2-IV2 assembly state relative to the III2-IV form is observed. We propose that the association of the Aac2 protein with the cytochrome bc1-COX supercomplex is important for the function of the OXPHOS complexes and for the assembly of the COX complex. The physiological implications of the association of AAC with the cytochrome bc1-COX-TIM23 supercomplex are also discussed

    Oxa1 Directly Interacts with Atp9 and Mediates Its Assembly into the Mitochondrial F\u3csub\u3e1\u3c/sub\u3eF\u3csub\u3eo\u3c/sub\u3e-ATP Synthase Complex

    Get PDF
    The yeast Oxa1 protein is involved in the biogenesis of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. The involvement of Oxa1 in the assembly of the cytochrome oxidase (COX) complex, where it facilitates the cotranslational membrane insertion of mitochondrially encoded COX subunits, is well documented. In this study we have addressed the role of Oxa1, and its sequence-related protein Cox18/Oxa2, in the biogenesis of the F1Fo-ATP synthase complex. We demonstrate that Oxa1, but not Cox18/Oxa2, directly supports the assembly of the membrane embedded Fo-sector of the ATP synthase. Oxa1 was found to physically interact with newly synthesized mitochondrially encoded Atp9 protein in a posttranslational manner and in a manner that is not dependent on the C-terminal, matrix-localized region of Oxa1. The stable manner of the Atp9-Oxa1 interaction is in contrast to the cotranslational and transient interaction previously observed for the mitochondrially encoded COX subunits with Oxa1. In the absence of Oxa1, Atp9 was observed to assemble into an oligomeric complex containing F1-subunits, but its further assembly with subunit 6 (Atp6) of the Fo-sector was perturbed. We propose that by directly interacting with newly synthesized Atp9 in a posttranslational manner, Oxa1 is required to maintain the assembly competence of the Atp9-F1-subcomplex for its association with Atp6

    Characterization of Mmp37p, a \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e Mitochondrial Matrix Protein with a Role in Mitochondrial Protein Import

    Get PDF
    Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix

    Measurement report: In situ observations of deep convection without lightning during the tropical cyclone Florence 2018

    Get PDF
    Hurricane Florence was the sixth named storm in the Atlantic hurricane season 2018. It caused dozens of deaths and major economic damage. In this study, we present in situ observations of trace gases within tropical storm Florence on 2 September 2018, after it had developed a rotating nature, and of a tropical wave observed close to the African continent on 29 August 2018 as part of the research campaign CAFE Africa (Chemistry of the Atmosphere: Field Experiment in Africa) with HALO (High Altitude and LOng Range Research Aircraft). We show the impact of deep convection on atmospheric composition by measurements of the trace gases nitric oxide (NO), ozone (O3_{3}), carbon monoxide (CO), hydrogen peroxide (H2_{2}O2_{2}), dimethyl sulfide (DMS) and methyl iodide (CH3_{3}I) and by the help of color-enhanced infrared satellite imagery taken by GOES-16. While both systems, i.e., the tropical wave and the tropical storm, are deeply convective, we only find evidence for lightning in the tropical wave using both in situ NO measurements and data from the World Wide Lightning Location Network (WWLLN)

    Measurement report: Hydrogen peroxide in the upper tropical troposphere over the Atlantic Ocean and western Africa during the CAFE-Africa aircraft campaign

    Get PDF
    This study focuses on the distribution of hydrogen peroxide (H2O2) in the upper tropical troposphere at altitudes between 8 and 15 km based on in situ observations during the Chemistry of the Atmosphere: Field Experiment in Africa (CAFE-Africa) campaign conducted in August–September 2018 over the tropical Atlantic Ocean and western Africa. The measured hydrogen peroxide mixing ratios in the upper troposphere show no clear trend in the latitudinal distribution with locally increased levels (up to 1 ppbv​​​​​​​) within the Intertropical Convergence Zone (ITCZ), over the African coastal area, as well as during measurements performed in proximity to the tropical storm Florence (later developing into a hurricane). The observed H2O2 distribution suggests that mixing ratios in the upper troposphere seem to be far less dependent on latitude than assumed previously and the corresponding factors influencing the photochemical production and loss of H2O2. The observed levels of H2O2 in the upper troposphere indicate the influence of convective transport processes on the distribution of the species not only in the tropical but also in the subtropical regions. The measurements are compared to observation-based photostationary steady-state (PSS) calculations and numerical simulations by the global ECHAM/MESSy Atmospheric Chemistry (EMAC) model. North of the ITCZ, PSS calculations produce mostly lower H2O2 mixing ratios relative to the observations. The observed mixing ratios tend to exceed the PSS calculations by up to a factor of 2. With the exception of local events, the comparison between the calculated PSS values and the observations indicates enhanced H2O2 mixing ratios relative to the expectations based on PSS calculations in the north of the ITCZ. On the other hand, PSS calculations tend to overestimate the H2O2 mixing ratios in most of the sampled area in the south of the ITCZ by a factor of up to 3. The significant influence of convection in the ITCZ and the enhanced presence of clouds towards the Southern Hemisphere indicate contributions of atmospheric transport and cloud scavenging in the sampled region. Simulations performed by the EMAC model also overestimate hydrogen peroxide levels particularly in the Southern Hemisphere, most likely due to underestimated cloud scavenging. EMAC simulations and PSS calculations both indicate a latitudinal gradient from the Equator towards the subtropics. In contrast, the measurements show no clear gradient with latitude in the mixing ratios of H2O2 in the upper troposphere with a slight decrease from the ITCZ towards the subtropics, indicating a relatively low dependency on the solar radiation intensity and the corresponding photolytic activity. The largest model deviations relative to the observations correspond with the underestimated hydrogen peroxide loss due to enhanced cloud presence, scavenging, and rainout in the ITCZ and towards the south.</p

    The STF2p Hydrophilin from Saccharomyces cerevisiae Is Required for Dehydration Stress Tolerance

    Get PDF
    The yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic activity is arrested during this period but restarts after rehydration. The yeast genes encoding hydrophilin proteins were characterised to determine their roles in the dehydration-resistant phenotype, and STF2p was found to be a hydrophilin that is essential for survival after the desiccation-rehydration process. Deletion of STF2 promotes the production of reactive oxygen species and apoptotic cell death during stress conditions, whereas the overexpression of STF2, whose gene product localises to the cytoplasm, results in a reduction in ROS production upon oxidative stress as the result of the antioxidant capacity of the STF2p protein

    Constructing a climate change logic: An institutional perspective on the "tragedy of the commons"

    Get PDF
    Despite increasing interest in transnational fields, transnational commons have received little attention. In contrast to economic models of commons, which argue that commons occur naturally and are prone to collective inaction and tragedy, we introduce a social constructionist account of commons. Specifically, we show that actor-level frame changes can eventually lead to the emergence of an overarching, hybrid "commons logic" at the field level. These frame shifts enable actors with different logics to reach a working consensus and avoid "tragedies of the commons." Using a longitudinal analysis of key actors' logics and frames, we tracked the evolution of the global climate change field over 40 years. We bracketed time periods demarcated by key field-configuring events, documented the different frame shifts in each time period, and identified five mechanisms (collective theorizing, issue linkage, active learning, legitimacy seeking, and catalytic amplification) that underpin how and why actors changed their frames at various points in time-enabling them to move toward greater consensus around a transnational commons logic. In conclusion, the emergence of a commons logic in a transnational field is a nonlinear process and involves satisfying three conditions: (1) key actors view their fates as being interconnected with respect to a problem issue, (2) these actors perceive their own behavior as contributing to the problem, and (3) they take collective action to address the problem. Our findings provide insights for multinational companies, nation-states, nongovernmental organizations, and other stakeholders in both conventional and unconventional commons
    • 

    corecore