1,254 research outputs found
Cross cultural differences in implicit learning of chunks versus symmetries
Three experiments explore whether knowledge of grammars defining global vs. local regularities has an advantage in implicit acquisition and whether this advantage is affected by cultural differences. Participants were asked to listen to and memorize a number of strings of 10 syllables instantiating an inversion (i.e. a global pattern); after the training phase, they were required to judge whether new strings were well formed. In Experiment 1, Western people implicitly acquired the inversion rule defined over the Chinese tones in a similar way as Chinese participants when alternative structures (specifically, chunking and repetition structures) were controlled. In Experiment 2 and 3, we directly pitted knowledge of the inversion (global) against chunk (local) knowledge, and found that Chinese participants had a striking global advantage in implicit learning, which was greater than that of Western participants. Taken together, we show for the first time cross cultural differences in the type of regularities implicitly acquired
Comment on ``Inflation and flat directions in modular invariant superstring effective theories''
The inflation model of Gaillard, Lyth and Murayama is revisited, with a
systematic scan of the parameter space for dilaton stabilization during
inflation.Comment: 7 pages, 2 figure
Addressing \mu-b_\mu and proton lifetime problems and active neutrino masses in a U(1)^\prime-extended supergravity model
We present a locally supersymmetric extension of the minimal supersymmetric
Standard Model (MSSM) based on the gauge group where, except for the supersymmetry breaking scale
which is fixed to be GeV, we require that all non-Standard-Model
parameters allowed by the {\it local} spacetime and gauge symmetries assume
their natural values. The symmetry, which is spontaneously broken
at the intermediate scale, serves to ({\it i}) explain the weak scale
magnitudes of and terms, ({\it ii}) ensure that dimension-3 and
dimension-4 baryon-number-violating superpotential operators are forbidden,
solving the proton-lifetime problem, ({\it iii}) predict {\it bilinear lepton
number violation} in the superpotential at just the right level to accommodate
the observed mass and mixing pattern of active neutrinos (leading to a novel
connection between the SUSY breaking scale and neutrino masses), while
corresponding trilinear operators are strongly supppressed. The phenomenology
is like that of the MSSM with bilinear R-parity violation, were the would-be
lightest supersymmetric particle decays leptonically with a lifetime of s. Theoretical consistency of our model requires the
existence of multi-TeV, stable, colour-triplet, weak-isosinglet scalars or
fermions, with either conventional or exotic electric charge which should be
readily detectable if they are within the kinematic reach of a hadron collider.
Null results of searches for heavy exotic isotopes implies that the re-heating
temperature of our Universe must have been below their mass scale which, in
turn, suggests that sphalerons play a key role for baryogensis. Finally, the
dark matter cannot be the weakly interacting neutralino.Comment: 33 pages, 2 figures, Discussion on proton decay and radiative
neutrino masses augmented, and references adde
Orthogonal U(1)'s, Proton Stability and Extra Dimensions
In models with a low quantum gravity scale, one might expect that all
operators consistent with gauge symmetries are present in the low-energy
effective theory. If this is the case, some mechanism must be present to
adequately suppress operators that violate baryon number. Here we explore the
possibility that the desired suppression is a consequence of an additional,
spontaneously-broken, non-anomalous U(1) symmetry that is orthogonal to
hypercharge. We show that successful models can be constructed in which the
additional particle content necessary to cancel anomalies is minimal, and
compatible with the constraints from precision electroweak measurements and
gauge unification. If unification is sacrificed, and only the new U(1) and its
associated Higgs fields live in the bulk, it is possible that the gauge field
zero mode and first few Kaluza-Klein excitations lie within the kinematic reach
of the Tevatron. For gauge couplings not much smaller than that of hypercharge,
we show that these highly leptophobic states could evade detection at Run I,
but be discovered at Run II. Our scenario presents an alternative to the
`cartographic' solution to baryon number violation in which leptons and quarks
are separated in an extra dimension.Comment: 16 pages LaTeX, 4 figure
Search for solar Kaluza-Klein axions in theories of low-scale quantum gravity
We explore the physics potential of a terrestrial detector for observing
axionic Kaluza-Klein excitations coming from the Sun within the context of
higher-dimensional theories of low-scale quantum gravity. In these theories,
the heavier Kaluza-Klein axions are relatively short-lived and may be detected
by a coincidental triggering of their two-photon decay mode. Because of the
expected high multiplicity of the solar axionic excitations, we find
experimental sensitivity to a fundamental Peccei-Quinn axion mass up to
eV (corresponding to an effective axion-photon coupling GeV) in theories with 2 extra
dimensions and a fundamental quantum-gravity scale of order 100
TeV, and up to eV (corresponding to GeV) in theories with 3 extra dimensions and
TeV. For comparison, based on recent data obtained from lowest
level underground experiments, we derive the experimental limits: GeV and GeV in the
aforementioned theories with 2 and 3 large compact dimensions, respectively.Comment: 19 pages, extended version, as to appear in Physical Review
Aspects of Fractional Superstrings
We investigate some issues relating to recently proposed fractional
superstring theories with . Using the factorization
approach of Gepner and Qiu, we systematically rederive the partition functions
of the and theories and examine their spacetime supersymmetry.
Generalized GSO projection operators for the model are found. Uniqueness
of the twist field, , as source of spacetime fermions is
demonstrated. Last, we derive a linear (rather than quadratic) relationship
between the required conformal anomaly and the conformal dimension of the
supercurrent ghost.Comment: 36 pages, CALT-68-1756 Revisions to match form to appear in Comm.
Math. Phys. Use standard TeX. Derivation of affine partition functions
related to models is now shown. References Update
The analytic structure of 2D Euler flow at short times
Using a very high precision spectral calculation applied to the
incompressible and inviscid flow with initial condition , we find that the width of its analyticity
strip follows a law at short times over eight decades. The
asymptotic equation governing the structure of spatial complex-space
singularities at short times (Frisch, Matsumoto and Bec 2003, J.Stat.Phys. 113,
761--781) is solved by a high-precision expansion method. Strong numerical
evidence is obtained that singularities have infinite vorticity and lie on a
complex manifold which is constructed explicitly as an envelope of analyticity
disks.Comment: 19 pages, 14 figures, published versio
Gauge Unification in Higher Dimensions
A complete 5-dimensional SU(5) unified theory is constructed which, on
compactification on the orbifold with two different Z_2's (Z_2 and Z_2'),
yields the minimal supersymmetric standard model. The orbifold accomplishes
SU(5) gauge symmetry breaking, doublet-triplet splitting, and a vanishing of
proton decay from operators of dimension 5. Until 4d supersymmetry is broken,
all proton decay from dimension 4 and dimension 5 operators is forced to vanish
by an exact U(1)_R symmetry. Quarks and leptons and their Yukawa interactions
are located at the Z_2 orbifold fixed points, where SU(5) is unbroken. A new
mechanism for introducing SU(5) breaking into the quark and lepton masses is
introduced, which originates from the SU(5) violation in the zero-mode
structure of bulk multiplets. Even though SU(5) is absent at the Z_2' orbifold
fixed point, the brane threshold corrections to gauge coupling unification are
argued to be negligibly small, while the logarithmic corrections are small and
in a direction which improves the agreement with the experimental measurements
of the gauge couplings. Furthermore, the X gauge boson mass is lowered, so that
proton decay to e^+ \pi^0 is expected with a rate within about one order of
magnitude of the current limit. Supersymmetry breaking occurs on the Z_2'
orbifold fixed point, and is felt directly by the gauge and Higgs sectors,
while squarks and sleptons acquire mass via gaugino mediation, solving the
supersymmetric flavor problem.Comment: 21 pages, Latex, references added, final versio
Can a Lattice String Have a Vanishing Cosmological Constant?
We prove that a class of one-loop partition functions found by Dienes, giving
rise to a vanishing cosmological constant to one-loop, cannot be realized by a
consistent lattice string. The construction of non-supersymmetric string with a
vanishing cosmological constant therefore remains as elusive as ever. We also
discuss a new test that any one-loop partition function for a lattice string
must satisfy.Comment: 14 page
- …