1,376 research outputs found

    Second look at the spread of epidemics on networks

    Full text link
    In an important paper, M.E.J. Newman claimed that a general network-based stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to a bond percolation model, where the bonds are the edges of the contact network and the bond occupation probability is equal to the marginal probability of transmission from an infected node to a susceptible neighbor. In this paper, we show that this isomorphism is incorrect and define a semi-directed random network we call the epidemic percolation network that is exactly isomorphic to the SIR epidemic model in any finite population. In the limit of a large population, (i) the distribution of (self-limited) outbreak sizes is identical to the size distribution of (small) out-components, (ii) the epidemic threshold corresponds to the phase transition where a giant strongly-connected component appears, (iii) the probability of a large epidemic is equal to the probability that an initial infection occurs in the giant in-component, and (iv) the relative final size of an epidemic is equal to the proportion of the network contained in the giant out-component. For the SIR model considered by Newman, we show that the epidemic percolation network predicts the same mean outbreak size below the epidemic threshold, the same epidemic threshold, and the same final size of an epidemic as the bond percolation model. However, the bond percolation model fails to predict the correct outbreak size distribution and probability of an epidemic when there is a nondegenerate infectious period distribution. We confirm our findings by comparing predictions from percolation networks and bond percolation models to the results of simulations. In an appendix, we show that an isomorphism to an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model.Comment: 29 pages, 5 figure

    Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example

    Get PDF
    We consider the interaction between a general size-structured consumer population and an unstructured resource. We show that stability properties and bifurcation phenomena can be understood in terms of solutions of a system of two delay equations (a renewal equation for the consumer population birth rate coupled to a delay differetial equation for the resource concentration). As many results for such systems are available, we can draw rigorous conclusions concerning dynamical behaviour from an analysis of a characteristic equation. We derive the characteristic equation for a fairly general class of population models, including those based on the Kooijman-Metz Daphnia model and a model introduced by Gurney-Nisbet and Jones et al., and next obtain various ecological insights by analytical or numerical studies of special cases

    A generic C1C^1 map has no absolutely continuous invariant probability measure

    Get PDF
    Let MM be a smooth compact manifold (maybe with boundary, maybe disconnected) of any dimension d≥1d \ge 1. We consider the set of C1C^1 maps f:M→Mf:M\to M which have no absolutely continuous (with respect to Lebesgue) invariant probability measure. We show that this is a residual (dense Gδ)setintheG_\delta) set in the C^1$ topology. In the course of the proof, we need a generalization of the usual Rokhlin tower lemma to non-invariant measures. That result may be of independent interest.Comment: 12 page

    Complex population dynamics as a competition between multiple time-scale phenomena

    Full text link
    The role of the selection pressure and mutation amplitude on the behavior of a single-species population evolving on a two-dimensional lattice, in a periodically changing environment, is studied both analytically and numerically. The mean-field level of description allows to highlight the delicate interplay between the different time-scale processes in the resulting complex dynamics of the system. We clarify the influence of the amplitude and period of the environmental changes on the critical value of the selection pressure corresponding to a phase-transition "extinct-alive" of the population. However, the intrinsic stochasticity and the dynamically-built in correlations among the individuals, as well as the role of the mutation-induced variety in population's evolution are not appropriately accounted for. A more refined level of description, which is an individual-based one, has to be considered. The inherent fluctuations do not destroy the phase transition "extinct-alive", and the mutation amplitude is strongly influencing the value of the critical selection pressure. The phase diagram in the plane of the population's parameters -- selection and mutation is discussed as a function of the environmental variation characteristics. The differences between a smooth variation of the environment and an abrupt, catastrophic change are also addressesd.Comment: 15 pages, 12 figures. Accepted for publication in Phys. Rev.

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider
    • …
    corecore