157 research outputs found
Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions
What is the common link, if there is any, between Church-Rosser systems,
prefix codes with bounded synchronization delay, and local Rees extensions? The
first obvious answer is that each of these notions relates to topics of
interest for WORDS: Church-Rosser systems are certain rewriting systems over
words, codes are given by sets of words which form a basis of a free submonoid
in the free monoid of all words (over a given alphabet) and local Rees
extensions provide structural insight into regular languages over words. So, it
seems to be a legitimate title for an extended abstract presented at the
conference WORDS 2017. However, this work is more ambitious, it outlines some
less obvious but much more interesting link between these topics. This link is
based on a structure theory of finite monoids with varieties of groups and the
concept of local divisors playing a prominent role. Parts of this work appeared
in a similar form in conference proceedings where proofs and further material
can be found.Comment: Extended abstract of an invited talk given at WORDS 201
Existential questions in (relatively) hyperbolic groups {\it and} Finding relative hyperbolic structures
This arXived paper has two independant parts, that are improved and corrected
versions of different parts of a single paper once named "On equations in
relatively hyperbolic groups".
The first part is entitled "Existential questions in (relatively) hyperbolic
groups". We study there the existential theory of torsion free hyperbolic and
relatively hyperbolic groups, in particular those with virtually abelian
parabolic subgroups. We show that the satisfiability of systems of equations
and inequations is decidable in these groups.
In the second part, called "Finding relative hyperbolic structures", we
provide a general algorithm that recognizes the class of groups that are
hyperbolic relative to abelian subgroups.Comment: Two independant parts 23p + 9p, revised. To appear separately in
Israel J. Math, and Bull. London Math. Soc. respectivel
Propositional Dynamic Logic for Message-Passing Systems
We examine a bidirectional propositional dynamic logic (PDL) for finite and
infinite message sequence charts (MSCs) extending LTL and TLC-. By this kind of
multi-modal logic we can express properties both in the entire future and in
the past of an event. Path expressions strengthen the classical until operator
of temporal logic. For every formula defining an MSC language, we construct a
communicating finite-state machine (CFM) accepting the same language. The CFM
obtained has size exponential in the size of the formula. This synthesis
problem is solved in full generality, i.e., also for MSCs with unbounded
channels. The model checking problem for CFMs and HMSCs turns out to be in
PSPACE for existentially bounded MSCs. Finally, we show that, for PDL with
intersection, the semantics of a formula cannot be captured by a CFM anymore
LNCS
We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its theoretical properties. In particular, we show that for every assumption A, the boolean combinations of properties that are safe or co-safe relative to A are monitorable under A. We give several examples and constructions on how an assumption can make a non-monitorable property monitorable, and how an assumption can make a monitorable property monitorable with fewer resources, such as integer registers
Avoiding pitfalls in interdisciplinary education
As the world's social-environmental problems increasingly extend across boundaries, both disciplinary and political, there is a growing need for interdisciplinarity, not only in research per se, but also in doctoral education. We present the common pitfalls of interdisciplinary research in doctoral education, illustrating approaches towards solutions using the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER) research network as a case study. We provide insights and detailed examples of how to overcome some of the challenges of conducting interdisciplinary research within doctoral studies that can be applied within any doctoral/postdoctoral education programme, and beyond. Results from a self-evaluation survey indicate that early-career workshops, annual meetings and research visits to other institutions were the most effective learning mechanisms, whereas single discipline-focused courses and coursework were among the least effective learning mechanisms. By identifying the strengths and weaknesses of components of NorMER, this case study can inform the design of future programmes to enhance interdisciplinarity in doctoral education, as well as be applied to science collaboration and academic research in general.Peer reviewe
Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont’s genome, and have identified more than 30 genes that have been transferred to the host cell’s nucleus through endosymbiotic gene transfer (EGT). This indicates that, similar to classical primary plastids, Paulinella endosymbionts have evolved a transport system to import their nuclear-encoded proteins. To deduce how these proteins are transported, we searched for potential targeting signals in genes for 10 EGT-derived proteins. Our analyses indicate that five proteins carry potential signal peptides, implying they are targeted via the host endomembrane system. One sequence encodes a mitochondrial-like transit peptide, which suggests an import pathway involving a channel protein residing in the outer membrane of the endosymbiont. No N-terminal targeting signals were identified in the four other genes, but their encoded proteins could utilize non-classical targeting signals contained internally or in C-terminal regions. Several amino acids more often found in the Paulinella EGT-derived proteins than in their ancestral set (proteins still encoded in the endosymbiont genome) could constitute such signals. Characteristic features of the EGT-derived proteins are low molecular weight and nearly neutral charge, which both could be adaptations to enhance passage through the peptidoglycan wall present in the intermembrane space of the endosymbiont’s envelope. Our results suggest that Paulinella endosymbionts/plastids have evolved several different import routes, as has been shown in classical primary plastids
- …