83 research outputs found

    Fast liquid chromatography/electrochemistry/mass spectrometry of ferrocenecarboxylic acid esters

    Get PDF
    Rapid liquid chromatographic separations of ferrocenecarboxylic esters of various alcohols and phenols have been achieved on reversed-phase columns of 20 mm length. After separation, the ferrocene derivatives are oxidized electrochemically under formation of the charged ferrocinium species, which are easily detected by mass spectrometry using an atmospheric pressure chemical ionization source operated in the heated nebulizer mode. While a series of nine phenol derivatives was separated within less than 1.5 min, six alcohol derivatives eluted within 1 min. Limits of detection using a single quadrupole mass analyzer ranged from 60 to 190 nmol/l. Additional work was directed on the use of a graphite in-line filter instead of a silica-based reversed-phase column to achieve the separation

    Perturbative Field-Theoretical Renormalization Group Approach to Driven-Dissipative Bose-Einstein Criticality

    Full text link
    The universal critical behavior of the driven-dissipative non-equilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven open systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex valued Landau-Ginzburg functional, which captures the near critical non-equilibrium dynamics, and generalizes Model A for classical relaxational dynamics with non-conserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest non-trivial order in the dimensional epsilon expansion about the upper critical dimension d_c = 4, and establish the emergence of a novel universal scaling exponent associated with the non-equilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (sub-)diffusive Model B with complex coefficients.Comment: 17 pages, 6 figures, to appear in Phys. Rev. X (2014

    X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions

    Full text link
    In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the experimental data are reanalyzed, taking into account recent theoretical results on order-parameter profiles in the crossover regime between ordinary and normal transitions. Excellent agreement between theoretical expectations and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.

    Nonequilibrium critical dynamics of the relaxational models C and D

    Full text link
    We investigate the critical dynamics of the nn-component relaxational models C and D which incorporate the coupling of a nonconserved and conserved order parameter S, respectively, to the conserved energy density rho, under nonequilibrium conditions by means of the dynamical renormalization group. Detailed balance violations can be implemented isotropically by allowing for different effective temperatures for the heat baths coupling to the slow modes. In the case of model D with conserved order parameter, the energy density fluctuations can be integrated out. For model C with scalar order parameter, in equilibrium governed by strong dynamic scaling (z_S = z_rho), we find no genuine nonequilibrium fixed point. The nonequilibrium critical dynamics of model C with n = 1 thus follows the behavior of other systems with nonconserved order parameter wherein detailed balance becomes effectively restored at the phase transition. For n >= 4, the energy density decouples from the order parameter. However, for n = 2 and n = 3, in the weak dynamic scaling regime (z_S <= z_rho) entire lines of genuine nonequilibrium model C fixed points emerge to one-loop order, which are characterized by continuously varying critical exponents. Similarly, the nonequilibrium model C with spatially anisotropic noise and n < 4 allows for continuously varying exponents, yet with strong dynamic scaling. Subjecting model D to anisotropic nonequilibrium perturbations leads to genuinely different critical behavior with softening only in subsectors of momentum space and correspondingly anisotropic scaling exponents. Similar to the two-temperature model B the effective theory at criticality can be cast into an equilibrium model D dynamics, albeit incorporating long-range interactions of the uniaxial dipolar type.Comment: Revtex, 23 pages, 5 eps figures included (minor additions), to appear in Phys. Rev.

    Novel non-equilibrium critical behavior in unidirectionally coupled stochastic processes

    Full text link
    Phase transitions from an active into an absorbing, inactive state are generically described by the critical exponents of directed percolation (DP), with upper critical dimension d_c = 4. In the framework of single-species reaction-diffusion systems, this universality class is realized by the combined processes A -> A + A, A + A -> A, and A -> \emptyset. We study a hierarchy of such DP processes for particle species A, B,..., unidirectionally coupled via the reactions A -> B, ... (with rates \mu_{AB}, ...). When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents \beta_i which are markedly reduced at each hierarchy level i >= 2. This scenario can be understood on the basis of the mean-field rate equations, which yield \beta_i = 1/2^{i-1} at the multicritical point. We then include fluctuations by using field-theoretic renormalization group techniques in d = 4-\epsilon dimensions. In the active phase, we calculate the fluctuation correction to the density exponent for the second hierarchy level, \beta_2 = 1/2 - \epsilon/8 + O(\epsilon^2). Monte Carlo simulations are then employed to determine the values for the new scaling exponents in dimensions d<= 3, including the critical initial slip exponent. Our theory is connected to certain classes of growth processes and to certain cellular automata, as well as to unidirectionally coupled pair annihilation processes. We also discuss some technical and conceptual problems of the loop expansion and their possible interpretation.Comment: 29 pages, 19 figures, revtex, 2 columns, revised Jan 1995: minor changes and additions; accepted for publication in Phys. Rev.

    Applications of Field-Theoretic Renormalization Group Methods to Reaction-Diffusion Problems

    Full text link
    We review the application of field-theoretic renormalization group (RG) methods to the study of fluctuations in reaction-diffusion problems. We first investigate the physical origin of universality in these systems, before comparing RG methods to other available analytic techniques, including exact solutions and Smoluchowski-type approximations. Starting from the microscopic reaction-diffusion master equation, we then pedagogically detail the mapping to a field theory for the single-species reaction k A -> l A (l < k). We employ this particularly simple but non-trivial system to introduce the field-theoretic RG tools, including the diagrammatic perturbation expansion, renormalization, and Callan-Symanzik RG flow equation. We demonstrate how these techniques permit the calculation of universal quantities such as density decay exponents and amplitudes via perturbative eps = d_c - d expansions with respect to the upper critical dimension d_c. With these basics established, we then provide an overview of more sophisticated applications to multiple species reactions, disorder effects, L'evy flights, persistence problems, and the influence of spatial boundaries. We also analyze field-theoretic approaches to nonequilibrium phase transitions separating active from absorbing states. We focus particularly on the generic directed percolation universality class, as well as on the most prominent exception to this class: even-offspring branching and annihilating random walks. Finally, we summarize the state of the field and present our perspective on outstanding problems for the future.Comment: 10 figures include

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate Îł\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Longitudinal study of computerised cardiotocography in early fetal growth restriction.

    Get PDF
    OBJECTIVES: To explore if in early fetal growth restriction (FGR) the longitudinal pattern of short-term fetal heart rate (FHR) variation (STV) can be used for identifying imminent fetal distress and if abnormalities of FHR registration associate with two-year infant outcome. METHODS: The original TRUFFLE study assessed if in early FGR the use of ductus venosus Doppler pulsatility index (DVPI), in combination with a safety-net of very low STV and / or recurrent decelerations, could improve two-year infant survival without neurological impairment in comparison to computerised cardiotocography (cCTG) with STV calculation only. For this secondary analysis we selected women, who delivered before 32 weeks, and who had consecutive STV data for more than 3 days before delivery, and known infant two-year outcome data. Women who received corticosteroids within 3 days of delivery were excluded. Individual regression line algorithms of all STV values except the last one were calculated. Life table analysis and Cox regression analysis were used to calculate the day by day risk for a low STV or very low STV and / or FHR decelerations (DVPI group safety-net) and to assess which parameters were associated to this risk. Furthermore, it was assessed if STV pattern, lowest STV value or recurrent FHR decelerations were associated with two-year infant outcome. RESULTS: One hundred and fourty-nine women matched the inclusion criteria. Using the individual STV regression lines prediction of a last STV below the cCTG-group cut-off had a sensitivity of 0.42 and specificity of 0.91. For each day after inclusion the median risk for a low STV(cCTG criteria) was 4% (Interquartile range (IQR) 2% to 7%) and for a very low STV and / or recurrent decelerations (DVPI safety-net criteria) 5% (IQR 4 to 7%). Measures of STV pattern, fetal Doppler (arterial or venous), birthweight MoM or gestational age did not improve daily risk prediction usefully. There was no association of STV regression coefficients, a last low STV or /and recurrent decelerations with short or long term infant outcomes. CONCLUSION: The TRUFFLE study showed that a strategy of DVPI monitoring with a safety-net delivery indication of very low STV and / or recurrent decelerations could increase infant survival without neurological impairment at two years. This post-hoc analysis demonstrates that in early FGR the day by day risk of an abnormal cCTG as defined by the DVPI protocol safety-net criteria is 5%, and that prediction of this is not possible. This supports the rationale for cCTG monitoring more often than daily in these high-risk fetuses. Low STV and/or recurrent decelerations were not associated with adverse infant outcome and it appears safe to delay intervention until such abnormalities occur, as long as DVPI is in the normal range
    • …
    corecore