33 research outputs found

    Segmentation and tracking of multiple interacting mice by temperature and shape information

    No full text
    The study of neurological processes and pharmaceutical effects often relies on the analysis of mice behaviour. Automatic tracking tools are widely employed for this purpose, however they are mainly limited to a single mouse. We propose a real time segmentation and tracking algorithm able to manage multiple interacting mice regardless of their fur colour or light settings via an infrared camera. The approach proposed combines position, temperature and shape information thanks to the two main contributions of this paper: the “temporal watershed” and its information fusion with mice “heat signatures”. The former segments shapes thanks to an extension of a classical seed-based segmentation algorithm in a expectation maximization framework; the latter contributes in mice identities preservation through the dynamic heat distribution of each body. Preliminary results show that our algorithm achieves performance comparable to the state of art, even with a larger number of targets to be tracked

    NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features

    No full text
    The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors

    Automatic Visual Tracking and Social Behaviour Analysis with Multiple Mice

    Get PDF
    <div><p>Social interactions are made of complex behavioural actions that might be found in all mammalians, including humans and rodents. Recently, mouse models are increasingly being used in preclinical research to understand the biological basis of social-related pathologies or abnormalities. However, reliable and flexible automatic systems able to precisely quantify social behavioural interactions of multiple mice are still missing. Here, we present a system built on two components. A module able to accurately track the position of multiple interacting mice from videos, regardless of their fur colour or light settings, and a module that automatically characterise social and non-social behaviours. The behavioural analysis is obtained by deriving a new set of specialised spatio-temporal features from the tracker output. These features are further employed by a learning-by-example classifier, which predicts for each frame and for each mouse in the cage one of the behaviours learnt from the examples given by the experimenters. The system is validated on an extensive set of experimental trials involving multiple mice in an open arena. In a first evaluation we compare the classifier output with the independent evaluation of two human graders, obtaining comparable results. Then, we show the applicability of our technique to multiple mice settings, using up to four interacting mice. The system is also compared with a solution recently proposed in the literature that, similarly to us, addresses the problem with a learning-by-examples approach. Finally, we further validated our automatic system to differentiate between C57B/6J (a commonly used reference inbred strain) and BTBR T+tf/J (a mouse model for autism spectrum disorders). Overall, these data demonstrate the validity and effectiveness of this new machine learning system in the detection of social and non-social behaviours in multiple (>2) interacting mice, and its versatility to deal with different experimental settings and scenarios.</p></div

    Chronic and Acute Intranasal Oxytocin Produce Divergent Social Effects in Mice

    No full text
    Intranasal administration of oxytocin (OXT) might be a promising new adjunctive therapy for mental disorders characterized by social behavioral alterations such as autism and schizophrenia. Despite promising initial studies in humans, it is not yet clear the specificity of the behavioral effects induced by chronic intranasal OXT and if chronic intranasal OXT could have different effects compared with single administration. This is critical for the aforementioned chronic mental disorders that might potentially involve life-long treatments. As a first step to address these issues, here we report that chronic intranasal OXT treatment in wild-type C57BL/6J adult mice produced a selective reduction of social behaviors concomitant to a reduction of the OXT receptors throughout the brain. Conversely, acute intranasal OXT treatment produced partial increases in social behaviors towards opposite-sex novel-stimulus female mice, while on the other hand, it decreased social exploration of same-sex novel stimulus male mice, without affecting social behavior towards familiar stimulus male mice. Finally, prolonged exposure to intranasal OXT treatments did not alter, in wild-type animals, parameters of general health such as body weight, locomotor activity, olfactory and auditory functions, nor parameters of memory and sensorimotor gating abilities. These results indicate that a prolonged over-stimulation of a 'healthy' oxytocinergic brain system, with no inherent deficits in social interaction and normal endogenous levels of OXT, results in specific detrimental effects in social behaviors
    corecore