39 research outputs found

    Estimation of Urinary Creatinine Excretion and Prediction of Renal Function in Morbidly Obese Patients: New Tools from Body Composition Analysis.

    Get PDF
    Background/Aims: In obese subjects the accuracy of prediction of renal function is quite low. The aim of this study was to obtain a more accurate estimate of urinary creatinine excretion (UCr), creatinine clearance (CCr), and GFR from body cell mass (BCM). Methods: Seventy-three adult morbidly obese patients (BMI 35.2-64.5 kg/m2) were examined. BCM was calculated from body impedance analysis. CCr was measured (mCCr) and was predicted from BCM and antropometric data (MR-BCMCCr), with Cockcroft and Gault (C&GCCr) and Salazar and Corcoran (S&CCCr) formulas. GFR was predicted from BCM (BCM GFR) and with MDRD and CKD-EPI formulas. Results: Multiple regression (MR) indicated a strict linear correlation between UCr, BCM and anthropometric data. UCr predicted from MR equation (MR-BCMUCr) was very similar to measured UCr. MR-BCMCCr (168±46 mL/min) and mCCr (167±51 mL/min) were also similar, while significant differences were found between mCCr, C&GCCr and S&CCCr. The correlation and the agreement between MR-BCMCCr and mCCr were closer and prediction error was lower than the other formulas. BCM GFR (125±32 mL/min) had close correlations and agreements with MDRD GFR and CKD EPI formulas. Conclusions: In morbidly obese patients the measurement of BCM meliorates the prediction of UCr and CCr, and allows the prediction of GFR

    The renal resistive index is associated with microvascular remodeling in patients with severe obesity

    Get PDF
    BACKGROUND Renal hemodynamics is impaired since the early stage of cardiometabolic disease. However, in obesity, its noninvasive ultrasound assessment still fails to provide pathophysiologic and clinical meaningfulness. We aimed to explore the relationship between peripheral microcirculation and renal hemodynamics in severe obesity. METHODS We enrolled fifty severely obese patients with an indication for bariatric referring to our outpatient clinic. Patients underwent an extensive reno-metabolic examination, paired with Doppler ultrasound and measurement of the renal resistive index (RRI). On the day of the surgery, visceral fat biopsies were collected to perform an ex-vivo complete microcirculatory assessment. Media-to-lumen ratio (M/L) and vascular response to acetylcholine (ACh), alone or co-incubated with N G -nitro arginine methyl ester (L-NAME), were measured. RESULTS Patients were stratified according to their normotensive (NT) or hypertensive (HT) status. HT had lower estimated glomerular filtration rate and higher RRI compared to NT, while the presence and extent of albuminuria were similar between the two groups. Concerning microcirculatory assessment, there were no differences between groups as regards the microvascular structure, while the vasorelaxation to ACh was lower in HT ( P = 0.042). Multivariable analysis showed a relationship between M/L and RRI ( P  = 0.016, St. β 0.37) and between albuminuria and the inhibitory response of L-NAME to Ach vasodilation ( P   =  0.036, St. β = -0.34). Notably, all these correlations were consistent also after adjustment for confounding factors. CONCLUSIONS The RRI and albuminuria relationship with microvascular remodeling in patients affected by severe obesity supports the clinical implementation of RRI to improve risk stratification in obesity and suggests a tight pathophysiologic connection between renal haemodynamics and microcirculatory disruption

    A Multisystem Mitochondrial Disease Caused by a Novel MT-TL1 mtDNA Variant: A Case Report

    Get PDF
    Background: Mitochondrial tRNA (MTT) genes are hotspot for mitochondrial DNA mutation and are responsible of half mitochondrial disease. MTT mutations are associated with a broad spectrum of phenotype often with complex multisystem involvement and complex genotype-phenotype correlations. MT-TL1 mutations, among which the m.3243A>G mutation is the most frequent, are associated with myopathy, maternal inherited diabetes and deafness, MELAS, cardiomyopathy, and focal segmental glomerulosclerosis.Case study: Here we report the case of an Italian 49-years old female presenting with encephalomyopathy, chronic proteinuric kidney disease and a new heteroplasmic m.3274 3275delAC MT-TL1 gene mutation.Conclusions: Our case demonstrates a systemic mitochondrial disease caused by the heteroplasmic m.3274 3275delAC MT-TL1 gene mutation, not yet described in the literature. A mitochondrial disease should be suspected in case of complex multisystem phenotypes, including steroid-resistant nephrotic syndrome with multisystemic involvement

    The Beneficial Effects of Bariatric-Surgery-Induced Weight Loss on Renal Function

    Get PDF
    Obesity represents an independent risk factor for the development of chronic kidney disease (CKD), leading to specific histopathological alterations, known as obesity-related glomerulopathy. Bariatric surgery is the most effective means of inducing and maintaining sustained weight loss. Furthermore, in the context of bariatric-surgery-induced weight loss, a reduction in the proinflammatory state and an improvement in the adipokine profile occur, which may also contribute to the improvement of renal function following bariatric surgery. However, the assessment of renal function in the context of obesity and following marked weight loss is difficult, since the formulas adopted to estimate glomerular function use biomarkers whose production is dependent on muscle mass (creatinine) or adipose tissue mass and inflammation (cystatin-c). Thus, following bariatric surgery, the extent to which reductions in plasma concentrations reflect the actual improvement in renal function is not clear. Despite this limitation, the available literature suggests that in patients with hyperfiltration at baseline, GFR is reduced following bariatric surgery, whereas GFR is increased in patients with decreased GFR at baseline. These findings are also confirmed in the few studies that have used measured rather than estimated GFR. Albuminuria is also decreased following bariatric surgery. Moreover, bariatric surgery seems superior in achieving the remission of albuminuria and early CKD than the best medical treatment. In this article, we discuss the pathophysiology of renal complications in obesity, review the mechanisms through which weight loss induces improvements in renal function, and provide an overview of the renal outcomes following bariatric surgery

    Renal Sinus Fat Is Expanded in Patients with Obesity and/or Hypertension and Reduced by Bariatric Surgery Associated with Hypertension Remission

    Get PDF
    Renal sinus fat is a fat depot at the renal hilum. Because of its location around the renal artery, vein, and lymphatic vessels, an expanded renal sinus fat mass may have hemodynamic and renal implications. We studied whether renal sinus fat area (RSF) associates with hypertension and whether following bariatric surgery a decrease in RSF associates with improvement of hypertension. A total of 74 severely obese and 46 lean controls were studied with whole-body magnetic resonance imaging (MRI). A total of 42 obese subjects were re-studied six months after bariatric surgery. RSF was assessed by two independent researchers using sliceOmatic. Glomerular filtration rate (eGFR) was estimated according to the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). Patients with obesity accumulated more RSF compared to lean controls (2.3 [1.7-3.1] vs. 1.8 [1.4-2.5] cm(2), p = 0.03). Patients with hypertension (N = 36) had a larger RSF depot compared to normotensive subjects (2.6 [2.0-3.3] vs. 2.0 [1.4-2.5] cm(2), p = 0.0007) also after accounting for body mass index (BMI). In the pooled data, RSF was negatively associated with eGFR (r = -0.20, p = 0.03), whereas there was no association with systolic or diastolic blood pressure. Following bariatric surgery, RSF was reduced (1.6 [1.3-2.3] vs. 2.3 [1.7-3.1] cm(2), p = 0.03) along with other markers of adiposity. A total of 9/27 of patients achieved remission from hypertension. The remission was associated with a larger decrease in RSF, compared to patients who remained hypertensive (-0.68 [ -0.74 to -0.44] vs. -0.28 [ -0.59 to 0] cm(2), p = 0.009). The accumulation of RSF seems to be involved in the pathogenesis of hypertension in obesity. Following bariatric surgery, loss of RSF was associated with remission from hypertension

    Circulating neurofilament is linked with morbid obesity, renal function, and brain density

    Get PDF
    Neurofilament light chain (NfL) is a novel biomarker reflecting neuroaxonal damage and associates with brain atrophy, and glial fibrillary acidic protein (GFAP) is a marker of astrocytic activation, associated with several neurodegenerative diseases. Since obesity is associated with increased risk for several neurodegenerative disorders, we hypothesized that circulating NfL and GFAP levels could reflect neuronal damage in obese patients. 28 morbidly obese and 18 lean subjects were studied with voxel based morphometry (VBM) MRI to assess gray and white matter densities. Serum NfL and GFAP levels were determined with single-molecule array. Obese subjects were re-studied 6 months after bariatric surgery. Morbidly obese subjects had lower absolute concentrations of circulating NfL and GFAP compared to lean individuals. Following bariatric surgery-induced weight loss, both these levels increased. Both at baseline and after weight loss, circulating NfL and GFAP values correlated inversely with eGFR. Cross-sectionally, circulating NfL levels correlated inversely with gray matter (GM) density, and this association remained significant also when accounting for age and total eGFR. GFAP values did not correlate with GM density. Our data suggest that when determining circulating NfL and GFAP levels, eGFR should also be measured since renal function can affect these measurements. Despite the potential confounding effect of renal function on NfL measurement, NfL correlated inversely with gray matter density in this group of subjects with no identified neurological disorders, suggesting that circulating NfL level may be a feasible biomarker of cerebral function even in apparently neurologically healthy subjects

    High altitude ammonia ice clouds observed by Juno/JIRAM at stationary positions

    Get PDF
    We report the first spectroscopic identification of high altitude ammonia ice clouds observed in three discrete oval structures in the atmosphere of Jupiter by the Jovian InfraRed Auroral Mapper (JIRAM]) on board the Juno spacecraft. The ovals are observed at stationary positions in 2.57 micron radiance maps derived from JIRAM's spectrometer channel data acquired on Aug 2th 2016 (observation phase #2) and Aug 25th 2016 (#3) during Juno's first perijove passage. A quantitative analysis of these three features is performed by means of an inversion technique based on Bayesian method

    Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data

    Get PDF
    The Jovian InfraRed Auroral Mapper (JIRAM) onboard the NASA Juno mission monitored the evolution of Jupiter’s polar cyclones since their first observation ever in February 2017. Data acquired by JIRAM have revealed cloudy cyclones organized in a complex, yet stable geometrical pattern at both poles. Several studies have investigated the dynamics and the structure of these cyclones, to understand the physical mechanisms behind their formation and evolution. In this work, we present vorticity maps deduced from the wind fields for the region poleward of ∼−80°, which has been extensively covered over the last four years of observations. The cyclonic features related to the stable polar cyclones are embedded in a slightly, but diffused anticyclonic circulation, in which short-living anticyclones emerge with respect to the surroundings. Although the general stability of both the cyclones and the whole system is strongly confirmed by this work, variations in the shape of the vortices, as well as changes in the local structures, have been observed

    First observations of Jupiter Aurorae by JIRAM on board Juno

    Get PDF
    JIRAM (Jovian Infrared Auroral Mapper) is an imager/spectrometer on board Juno. One of its main scientific goals is to get detailed coverage of the jovian aurorae on both northern and southern polar regions, taking advantage of the highly elliptical polar orbit of the Juno spacecraft. Among the various molecular ions that emit in the electron-driven Jupiter's aurora, H3+ is observable in the JIRAM spectral range. Its main roto-vibrational band is around 2521 1/cm, composed of more than 200 possible transitions in the range 3.0-5.0 μm; observation of the infrared emission of H3+ is mainly possible in a spectral interval (3.2 to 4.0 μm) where the solar and thermal radiance emitted by the planet are very low due to the intense atmospheric methane absorption band, resulting in a high auroral contrast against Jupiter's dark disk. Hydrocarbon emission lines are also falling in the JIRAM spectral range, thus allowing to study the morphology and variability of those emitting species. Hence, JIRAM is composed of both a 2-D IR imager and a 1-D spectrometer channel in the range 2-5 um with a spectral resolution of about 9 nm and a surface resolution as low as 50 km. One of the two imager channels is centered at 3.455 µm (in the H3+ emission region), to give a context information of auroral emission, along with the spectrometer detailed measurement. In this presentation we show the first results on JIRAM's observations of the H3+ infrared emission, taken around the first Juno pericenter (August 2016) after the orbit insertion. These observations provide spatial, spectral and temporal distribution of the Jovian auroras. Successive slant and limb observations of H3+ emission are planned and will allow the study of the vertical distribution of H3+ density and temperature profile in the thermosphere

    Five Years of Observations of the Circumpolar Cyclones of Jupiter

    Get PDF
    The regular polygons of circumpolar cyclones, discovered by Juno in 2017, are one of the most puzzling features of Jupiter. Here we show new recent global pictures of the North polar cyclones' structure. These are the first simultaneous images of the whole structure since 2017, and we find that it remained almost unperturbed, just like the South one. The observation of these long-lasting structures poses questions regarding the formation mechanism of cyclones, and on their vertical structure. Data by Juno/JIRAM infrared camera collected over the last 5 years show that cyclones migrate around what may seem like equilibrium positions, with timescales of a few months but, aside from that, the cyclones systems are very stable. Our analysis of the observations shows that the motion of cyclones around their equilibrium position is uncorrelated with their position if a barotropic approximation (β-drift) is assumed. Thus, a different dynamical explanation than the barotropic β-drift is needed to explain the stability of the observed features. Each cyclone has a peculiar morphology, which differs from the others and is stable over the observed lapse of time in most cases
    corecore