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Abstract: Obesity represents an independent risk factor for the development of chronic kidney disease
(CKD), leading to specific histopathological alterations, known as obesity-related glomerulopathy.
Bariatric surgery is the most effective means of inducing and maintaining sustained weight loss.
Furthermore, in the context of bariatric-surgery-induced weight loss, a reduction in the proinflam-
matory state and an improvement in the adipokine profile occur, which may also contribute to the
improvement of renal function following bariatric surgery. However, the assessment of renal function
in the context of obesity and following marked weight loss is difficult, since the formulas adopted
to estimate glomerular function use biomarkers whose production is dependent on muscle mass
(creatinine) or adipose tissue mass and inflammation (cystatin-c). Thus, following bariatric surgery,
the extent to which reductions in plasma concentrations reflect the actual improvement in renal
function is not clear. Despite this limitation, the available literature suggests that in patients with
hyperfiltration at baseline, GFR is reduced following bariatric surgery, whereas GFR is increased in
patients with decreased GFR at baseline. These findings are also confirmed in the few studies that
have used measured rather than estimated GFR. Albuminuria is also decreased following bariatric
surgery. Moreover, bariatric surgery seems superior in achieving the remission of albuminuria and
early CKD than the best medical treatment. In this article, we discuss the pathophysiology of renal
complications in obesity, review the mechanisms through which weight loss induces improvements
in renal function, and provide an overview of the renal outcomes following bariatric surgery.

Keywords: obesity; bariatric surgery; renal function; renal metabolism; renal perfusion; renal sinus fat

1. Introduction

Bariatric surgery is the most effective means of inducing and maintaining sustained
weight loss. Apart from the weight loss effect, bariatric surgery leads to the remission of
chronic metabolic disorders such as type 2 diabetes (T2D) [1] and hypertension [2].

Both obesity and T2D represent independent risk factors for chronic kidney disease
(CKD) [3,4]. Currently, more than 850 million people are affected by CKD worldwide, a
condition linked to substantially increased mortality and impaired quality of life [5]. These
numbers, in combination with the low awareness of CKD and the projection that renal
replacement therapy will increase substantially in the next few decades, make CKD a major
health problem.

In the present article, we review the literature regarding the pathophysiology leading
to chronic kidney disease in the context of obesity and the effects of bariatric surgery on
renal function, structure, metabolism, and perfusion. A special mention is made of the
challenges in evaluating renal function following weight loss, since in this setting, the
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assessment of renal function with estimates based on creatinine or cystatin-c levels is biased
due to the contemporaneous reduction in lean and fat mass, respectively [6].

2. Search Strategy and Selection Criteria

We searched PubMed and Google Scholar for articles published up to August 2022,
using the search terms: “renal function”, “chronic kidney disease”, “GFR”, “glomerular
filtration rate”, “albuminuria, “proteinuria”, “nephrolithiasis”, “renal metabolism”, “renal
perfusion”, “renal sinus fat”, “obesity”, and “bariatric surgery”. We also searched the
reference lists of the articles identified by this search strategy and selected relevant titles.
We supplemented the search with records of relevant publications from our personal files.

2.1. Structural and Functional Renal Alterations Occurring in the Context of Obesity

Numerous cross-sectional and cohort studies have shown an association between obe-
sity and both the presence and the development of chronic kidney disease (CKD) [7–9]. In
large population-based studies, a higher BMI was associated with a more rapid decrease in
estimated glomerular filtration rate (eGFR) over time [9] and with the incidence of end-stage
kidney disease (ESKD) [10,11]. Furthermore, severe obesity was shown to be associated
with a more rapid reduction in GFR in patients with pre-existing CKD [12]. A previous
meta-analysis showed that overweight and obesity accounted for approximately for 13.8%
and 24.9% of kidney disease, without sex differences, in industrialized countries [4].

Obesity is associated with the risk of developing kidney damage through both direct
and indirect mechanisms, by favoring the development of T2D and hypertension [13].
In this respect, obesity per se causes various structural and functional renal alterations,
likely as an adaptation to modified hemodynamic conditions. Previous autopsy studies
have shown that patients with obesity have larger kidney diameters and heavier kidneys
compared to normal-weight controls [14]. Furthermore, as demonstrated in more recent
morphometric studies performed using kidney biopsies, obesity is associated with a higher
glomerular size [15], even in the absence of overt kidney disease [16]. This phenomenon
may be related to the compensatory hypertrophy of single nephrons following the increase
in metabolic demands. In addition to the glomeruli, tubules are also affected. Kidney
biopsies from non-diabetic obese patients with proteinuria have demonstrated that obesity-
related glomerular modification is associated with proximal tubular epithelial hypertrophy
and increased tubular urinary space compared to lean non-proteinuric controls [17].

As previously mentioned, parallel to structural changes, obesity is associated with
functional modifications that reflect changes in hemodynamics. GFR and renal plasma
flow (RPF) both increase with obesity, as well as the ratio between these two parameters,
the so-called filtration fraction (RPF/GFR) [18]. The elevation in the filtration fraction
leads to an increase in the reabsorption of sodium and water in the proximal convoluted
tubules, resulting in decreased afferent arteriolar resistance via the tubuloglomerular
feedback mechanism [19]. From this altered arteriolar balance derives the phenomenon of
glomerular hyperfiltration, which can be considered the first step of subclinical damage in
severe obesity. Once the mechanism of hyperfiltration is triggered, a series of histological
modifications may occur, and these can lead to the transition from pre-clinical states to
overt nephropathy, such as microalbuminuria, subnephrotic and nephrotic proteinuria, and
a progressive reduction in GFR [20].

In the last few decades, the progress in the knowledge on the renal involvement
in obesity has made it possible to identify a specific histopathological disease, known
as obesity-related glomerulopathy (ORG) [20]. The histologic features of ORG include
glomerulomegaly with reduced glomerular density and focal segmental glomerulosclerosis
(FSGS) [21]. In ORG, although not always present, the pattern of FSGS consists of perihilar
segmental sclerosis, associated in the majority of cases with peripheral sclerotic lesions that
typically affect hypertrophied glomeruli. This specific histological picture may reflect a
redistribution of the hemodynamic pressure load on the vascular pole of the glomeruli [21].
In the end, the percentage of glomeruli affected by segmental sclerosis tends to be lower in
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ORG than in primary FSGS, and this is consistent with the clinical course of ORG, which is
typically less aggressive [22].

2.2. Glomerular Hyperfiltration in Severe Obesity Is the Trigger for the Development of ORG

Hyperfiltration is a phenomenon that was first postulated by Brenner et al. [23], who
showed that unilateral nephrectomy caused proteinuria and sclerosis in the contralateral
kidney in murine models. The theory of hyperfiltration is based on the hypothesis that a
reduction in the number of healthy nephrons leads to global adaptation in the rest, which
are forced to take over the function in order to keep the GFR stable. Thus, the residual
glomeruli are characterized by an increase in glomerular capillary pressure and tensile
stress, which may represent the first stage of subclinical kidney damage [24], potentially
leading to podocyte loss and glomerulosclerosis [25]. However, although obesity in the
absence of comorbidities is itself associated with hyperfiltration, the main mechanism
involved is yet to be fully elucidated.

A prospective study involving 194 Pima Indians with different stages of insulin resis-
tance demonstrated that the GFR was higher in patients with impaired glucose tolerance
compared to their normoglycemic counterparts [26], while another study including predom-
inantly overweight/obese normoglycemic individuals showed that, although measures
of adiposity were positively related to GFR, the degree of insulin resistance measured by
the euglycemic hyperinsulinaemic clamp was the most important parameter associated
with hyperfiltration according to the multivariate analysis [27]. This suggests that insulin
resistance may tip the balance in the development of glomerular hyperfiltration. It is
known that chronic low-grade inflammation, which is triggered by the activation of the
NLRP3 inflammasome, is the common denominator in insulin resistance and obesity [28],
and it has been shown that serum levels of interleukin-1β correlate inversely with insulin
sensitivity [29].

Furthermore, evidence suggests a link between endothelial dysfunction and obesity,
especially in a condition associated with a proatherosclerotic phenotype in which the
inflammatory burden is known to play a pivotal role [30].

On the basis of these published studies, the following pathophysiological steps can
explain the link between obesity and hyperfiltration, the first step in renal disease. First,
the disruption in adipose tissue function leads to a chronic inflammatory state and to
the dysregulation of the endocrine actions of adipocyte-derived factors [31]. On the one
hand, this favors the development of insulin resistance; on the other hand, it leads to
endothelial dysfunction. Insulin resistance and endothelial dysfunction could be the key
factors involved in the onset of hyperfiltration and in subsequent chronic renal damage in
severe obesity.

In support of the importance of inflammation in inducing hyperfiltration, a recent
study showed that in severe obesity, after bariatric surgery and the consequent impressive
weight loss, the GFR remained abnormally high in about 30% of subjects who did not have
a reduction in IL-1β and caspase-1, suggesting the pathogenetic role of inflammasome
signaling in perpetuating hyperfiltration [32].

A key adipokine for the development of ORG is represented by leptin, which increases
both in conditions of insulin resistance and through inflammatory mechanisms mediated
by Il-1β and TNF-α [33,34], highlighting the link between inflammation and insulin re-
sistance as pathogenetic factors not only of hyperfiltration, but also of the subsequent
histological steps characterizing ORG. Leptin stimulates the expression of collagen type IV
production, promoting an increase in the extracellular matrix and renal fibrosis [35] and the
development of a tubular fibrogenic response via TGF-β [36]. Furthermore, the increased
expression of IL-6 receptors and signal transducers has been shown in the glomeruli of
individuals affected by ORG, suggesting the role of IL-6 in the progression of kidney
disease [37].

Obesity, whether it is associated with hyperlipidemia or not, aggravates intracellular
ectopic lipid accumulation [38]. In fact, the endothelial dysfunction increases lipoprotein
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leakage in the glomerular tuft, while the low-grade inflammatory state interferes with
LDL receptor feedback, causing lipid accumulation in mesangial, endothelial, and tubular
cells [39]. Lipotoxicity causes a decrease in podocyte number and density in ORG [38], and
the damage of the glomerular filtration barrier leads to the development and worsening
of proteinuria. Furthermore, intracellular lipid accumulation in cells rich in mitochondria
such as those that make up the proximal tubules leads to mitochondrial dysfunction, mainly
via excessive reactive oxygen species production [40], contributing to renal fibrosis [41].

A recent in vitro study showed that adiponectin ameliorated FFA-induced podocyte
injury, downregulating the ROS/NLRP3 pathway [42]. These data suggest that the altered
balance between adipokines such as adiponectin and leptin contributes to the pathogenesis
of ORG.

2.3. The Difficulty in Evaluating GFR before and after Bariatric Surgery: The Limits of the GFR
Estimation Formulas

In clinical practice, renal function is estimated from GFR (eGFR) using serum creatinine
or, sometimes, serum cystatin-c levels. However, both of these renal function markers have
the significant limitation that they are influenced by changes in muscle and fat mass. In fact,
creatinine generation is directly related to free fatty mass, while cystatin-c can be affected
by fat mass [6]. Since the amount of fat and lean mass in patients with obesity is greater
compared to normal-weight subjects, and the commonly used eGFR equations, adjusted
for body surface area (BSA), were created using older data from populations with a lower
prevalence of obesity [43], there are systematic errors in the estimation of the actual renal
function in severe obesity [44].

Specifically, eGFR formulas that included weight, height, or BSA had an error that
increased with increasing BMI, and the adjustment for BSA (i.e., the assumed 1.73 m2 of
BSA used in the adjusted eGFR formulas) led to a significant underestimation of the renal
function, resulting in an overestimation of the severity of CKD and, at the same time, an
underestimation of the first stage of kidney injury due to hyperfiltration [44].

On the contrary, formulas for the estimation of creatinine clearance, such as those
of Cockcroft and Gault, and the eGFR formulas unadjusted for BSA (mL/min) (GFR
adjusted = (GFR unadjusted/BSA) × 1.73) overestimate the real renal function, because
in severe obesity there is a disproportionate amount of fat mass as a percentage of body
weight compared to in normal-weight subjects, which does not contribute to creatinine
production [45].

After bariatric surgery, creatinine production decreases by about 20–25%, due to the
loss in not only fat mass, but also muscle mass, resulting in a decrease in serum creatinine
levels [46]. Therefore, using the adjusted eGFR formulas, we usually find an increase in
eGFR following bariatric surgery as result of a reduction in serum creatinine levels. The
extent to which this is due to the positive effect per se of weight loss on renal function,
and the extent to which this is due to the weight loss itself is therefore difficult to discern
when using eGFR. Vice versa, with the noticeable reduction in BSA following weight loss,
unadjusted eGFR formulas may underestimate the true eGFR variation, because fat mass is
reduced to a greater extent than muscle mass.

Cystatin-c, although initially promising, proved to be an imperfect marker for as-
sessing kidney function in severe obesity. Cystatin-c is associated with fat mass and
inflammation, which in turn are related to conditions of severe obesity [47]. Thus, once
again following significant weight loss, it is not clear whether changes in cystatin-c lev-
els reflect changes in the generation of this marker (due to a reduction in fat mass or
inflammatory burden) or indicate an effective improvement in GFR.

In summary, in renal function evaluation before and after bariatric surgery, there are
two main concerns. First, the correct estimation of GFR in obese patients is complicated,
and eGFR equations fail to reflect real renal function. Second, the drastic changes in body
composition make the observed changes in eGFR difficult to interpret. These concerns can
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be overcome by actually measuring rather than estimating GFR, and by evaluating markers
of kidney damage, such as albuminuria in longitudinal studies.

2.4. The Effect of Bariatric Surgery on Estimated GFR and Albuminuria

In a large study, Chang and colleagues investigated the impact of bariatric surgery on
renal outcomes in 985 patients (baseline type 2 diabetes in 37.8%; Roux-en-Y gastric bypass
(RYGB) 96.5%, vertical sleeve gastrectomy (SG) 3.5%) and an equal number of matched
controls with a median of 4.4 and 3.8 years of follow up [48]. Bariatric surgery reduced the
risk of ≥30% eGFR decline by 58% (hazard ratio 0.42; 95% CI 0.32–0.55) and was associated
with a 57% lower risk of the doubling of serum creatinine or end-stage kidney disease
(ESKD). The beneficial impact of bariatric surgery was similar among patients with higher
or lower eGFR. Risk reductions of similar magnitudes were also reported in the SOS study,
in which the proportion of patients who underwent RYGB was lower (13%), and there was
a smaller prevalence of T2D (about 7%) [49].

The Longitudinal Assessment of Bariatric Surgery (LABS)-2 investigated the impact
of bariatric surgery on the Kidney Disease: Improving Global Outcomes (KDIGO) CKD
classification over up to 7 years of follow up. On the basis of the combination of eGFR and
albuminuria, patients were divided into four classes of CKD risk: low risk (83%), moderate
risk (12%), high risk (3.4%), and very high risk (1.4%). The prevalence of T2D was 28%
in patients with a low CKD risk and reached 83% in those with a very high CKD risk.
At the 7-year follow up, improvements were observed in 53% of patients with moderate
baseline CKD risk and 56% of those with high baseline risk. Furthermore, 23% of those
with very high baseline CKD risk improved their risk category after 7 years, demonstrating
the renoprotective effects of bariatric surgery across the whole spectrum of CKD classes,
although less pronounced in the very-high-risk CKD category. The proportion of patients
whose CKD risk worsened was ≤10%, and only five patients developed ESKD. Sensitivity
analyses using year 1 as baseline to minimize the effect of weight loss on serum levels of
creatinine, and differing eGFR formulas, yielded similar results [50].

In a 16-year retrospective study of individuals who underwent bariatric surgery,
Romero-Funes et al. studied changes in eGFR, albuminuria, and kidney failure risk before,
3 months after, and one year after bariatric surgery (SG 61%, RYGB 39%). After the one-year
follow up, in 54% of patients with moderately or severely increased albuminuria, the
median urinary albumin to creatinine ratio (uACR) decreased from 80 to 46 mg/g. In 29%
of individuals with CKD stage ≥ 3, the median uACR decreased from 66.5 to 47 mg/g at
one year, and the relative risk of progression to ESKD was reduced by 70% at 2 years and
by 60% at 5 years [51].

A retrospective cohort study investigated the association between bariatric surgery and
the risk of mortality up to 5 years post-surgery and whether this association was modified
by incident ESKD in 802 pre-dialysis CKD stage patients matched to 4933 individuals
who were not undergoing surgery [52]. After adjustment for incident ESKD, bariatric
surgery was associated with a 79% lower risk of mortality compared to matched controls.
Furthermore, incident ESKD did not impact the association between bariatric surgery and
mortality, suggesting that surgery was associated with a mortality reduction in pre-dialysis
obese individuals, regardless of the development of ESKD. In a retrospective study of
149 patients undergoing either RYGB or SG, it was shown that at the 2-year follow-up, eGFR
was improved in both study groups to a similar extent. Interestingly, the increase in GFR
was independent of the percentage of weight loss, suggesting that other mechanisms rather
than weight loss per se contribute to the improvement in renal function [53]. Moreover,
in this study, progression to worse renal function following bariatric surgery correlated
significantly with lower rates of hypertension and diabetes remission [53].

In a recent analysis from the Microvascular Outcomes after Metabolic Surgery (MOMS)
trial, Cohen et al. assessed the hypothesis that RYGB would be more effective than the
best medical treatment as a means of achieving the remission of microalbuminuria in
patients with type 2 diabetes, obesity, and early-stage CKD at baseline [54]. The inclusion
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criteria for the study participants were uACR greater than 30 mg/g, T2D, and BMI ranging
from 30 to 35 kg/m2. Patients had G1 to G3 and A2 to A3 CKD. Forty-nine patients were
randomized to receive the best medical treatment and 51 to undergo RYGB. At the 2-year
follow-up, remission from albuminuria occurred more frequently in the RYGB group (84%)
compared to patients receiving the best medical treatment (56%) (risk difference 0.279; 95%
CI, 39.0–70.0%). The remission of CKD, defined as the remission of albuminuria with an
eGFR greater than 60 mL/min, also occurred more frequently following RYGB 81.9% (95%
CI, 71.8–92.1%) compared to best medical treatment 48.2% (95% CI, 32.2–64.1%) [54].

2.5. Studies Using Measured GFR following Bariatric Surgery

Few prospective studies have evaluated the effect of bariatric surgery on renal function
using mGFR. Chagnac et al. [18] studied eight patients with morbid obesity and nine
healthy lean controls measuring inulin and PAH clearance to determine GFR and renal
plasma flow, respectively. Patients with obesity had a higher GFR (145 ± 14 mL/min vs.
90 ± 5 mL/min) and higher RPF (803 ± 39 mL/min vs. 610 ± 41 mL/min) compared
to the healthy volunteers. Following bariatric surgery, along with the marked weight
loss, both measurements and albuminuria were significantly decreased [18]. Another
study using iohexol plasma clearance to calculate the mGFR was conducted by Friedman
et al. in a population of obese patients without T2D or overt nephropathy [55]. Following
bariatric surgery, the unadjusted mGFR showed a significant reduction of ~17 ± 6 mL/min
compared to the baseline values, suggesting the protective role of surgery-induced weight
loss against hyperfiltration.

Recently, Clerte et al. [56] demonstrated that six months after bariatric surgery (RYGB
or SG), the iohexol clearance rate globally increased slightly in 16 patients affected by severe
obesity, with or without T2D, 25% of whom had baseline mGFR < 90 mL/min. In a subgroup
analysis of seven patients displaying hyperfiltration at baseline (mGFR > 120 mL/min), the
mGFR was significantly decreased and returned to normal values. Curiously, changes in
body mass index (BMI) post-surgery did not correlate with the variations in mGFR [56]. This
finding was confirmed in a prospective study conducted by Solini et al. [57]. Specifically, in
this prospective cohort study, twenty-five obese and non-diabetic individuals showed a
substantial stability in unadjusted mGFR and an improvement in adjusted mGFR, but none
of the measures of adiposity at baseline were associated with ∆mGFR/BSA variations [57].

Overall, these data suggest that weight loss following bariatric surgery protects from
glomerular hyperfiltration in obese patients who have excessive GFR at baseline and
protects from renal failure in patients who have already experienced a decline in their GFR.

2.6. Meta-Analysis of Renal Function and Bariatric Surgery

Data on the effect of bariatric surgery on albuminuria and/or proteinuria were
included in a 2016 meta-analysis of continuous data from 10 studies (and a total of
930 patients) and dichotomous data from 14 studies (1186 patients) [58]. After bariatric
surgery, a reduced uACR and albumin excretion rates were shown. Furthermore, the risk
ratio (RR) relative to baseline was reduced for both proteinuria (RR 0.31; 95% CI 0.22–0.43)
and albuminuria (RR 0.42; 95% CI 0.36–0.50).

In the same meta-analysis, the impact of bariatric surgery on hyperfiltration was also
assessed. Studies evaluating glomerular hyperfiltration were divided into four subgroups
(those using mGFR, CrCl, adjusted eGFR, and unadjusted eGFR), and they were analyzed
separately. Nine studies with continuous data (631 patients) and six studies of 514 patients
with dichotomous data were included in this meta-analysis, demonstrating that the RR for
hyperfiltration relative to baseline was significantly reduced after surgery (RR 0.46; 95% CI
0.26–0.82). In patients with hyperfiltration, the analysis of the available continuous data also
showed significant decreases in all subgroups, although the authors drew conclusions from
studies only using measured GFR (with inulin or iothalamate clearance). On the contrary,
individuals with stage-2 CKD (i.e., GFR 60–90 mL/min/1.73 m2), for which only studies
with eGFR were available, a significant increase in adjusted and unadjusted eGFR after
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bariatric surgery was shown. In summary, this meta-analysis showed the protective role of
bariatric surgery in reducing hyperfiltration and, at the same time, in increasing GFR when
renal function was already compromised [58]. The main limitation of this meta-analysis
was the restricted amount of evidence due to the lack of randomized controlled trials and
the differences in the timings of follow-up studies. Still, the overall heterogeneity of the
outcome measures was low, suggesting a consistent response to surgery across studies [58].

The efficacy of bariatric surgery in relation to renal function and proteinuria were
confirmed two years later by another meta-analysis that included 23 cohort studies, for
a total of 3015 patients [59]. In fact, bariatric surgery significantly decreased proteinuria,
reported in 13 of the 23 studies (mean difference—0.04 g/24h; 95% CI = −0.06 to −0.02).
Reductions in albuminuria were seen after various surgical techniques, without differences
for type of intervention.

GFR was assessed in 17 out of 23 studies. Two studies directly measured GFR through
plasma iohexol clearance and inulin clearance, while the other studies reported 24-h
creatinine clearance or Cockcroft–Gault formulas and eGFR calculated via MDRD or CKD-
EPI equations.

Globally, GFR tended to be normalized across the different categories of renal impair-
ment, being significantly reduced in the hyperfiltrating subjects and significantly improved
in the CKD subgroups, 6 months or more following bariatric surgery, irrespective of the
surgical method performed.

The most recent meta-analysis (2021) of six studies involving 106 patients with at
least stage-3 CKD receiving bariatric surgery showed an improvement in adjusted eGFR
with a mean difference of 11.64 mL/min/1.73m2 (95%CI: 5.84–17.45) [60]. There was no
significant difference in the relative risk of having stage-3 CKD after bariatric surgery, with
a relative risk of −1.13 (95%CI: −0.83 to −2.07), but there was a reduction in the relative
risk of having micro and macro albuminuria (uACR > 30 mg/g) (RR = 3.03; 95%CI: −1.44
to −6.40) in three studies that included a total of 489 patients [60].

Interestingly, a meta-analysis focusing on 15 studies that reported changes in albumin-
uria in patients with obesity and T2D did not show any significant correlation between
uACR improvement and glycemic improvement, expressed as the reduction in HbA1c
(rs = −0.378, p = 0.403) or the amount of weight decrease (rs = −0.306, p = 0.504). The
researchers discussed these results and suggested that weight-independent factors such as
changes in incretins following surgery-induced anatomical remodeling and/or the restora-
tion of vascular tone and podocyte functions due to improved adiponectin level might have
contributed to the reduction in albuminuria [61]. All of the above studies are summarized
in Table 1.

Table 1. Summary of the effects of surgery-induced weight loss on GFR and albuminuria.

Reference N Intervention Follow-Up Results

Studies using eGFR

Chang et al. [48] 985 patients RYGB (96.5%),
LSG (3.5%) ~4 years BS reduced the risk of ≥30% eGFR decline

and the risk of ESKD.

Shulman et al. [49]
4047 patients, of which 2010
received BS and 2037 usual

obesity care

RYGB (13%),
VBG (69%),
GB (18%)

20 yearss BS decreased the long-term incidence of ESRD
by >70%.

Friedman et al. [50] 1449 patients (824 patients at
7 yrs) GB, RYGB 1 and 7 years

BS resulted in lower CKD risk in a substantial
proportion of patients throughout the 7-year

follow-up period.

Funes et al. [51] 69 patients LSG (42/69), RYGB (17/69) Retrospective
(16 years)

Following BS, eGFR and albuminuria were
improved. The overall improvement in eGFR
was greater in patients with stage-3 CKD-EPI

than among those with stage-2 CKD-EPI.

Coleman et al. [52]
802 BS patients with CKD stages

3–5, vs. 4933 patients who did
not undergo BS

RYGB, sleeve gastrectomy, GB Retrospective
(5 years)

BS was associated with a 79% lower 5-year
risk of mortality compared to

matched controls.
Holcomb et al. [53] 149 patients RYGB, LSG 2 years eGFR was improved similarly in both groups.

Cohen et al. [54] 51 RYGB,
49 OMT RYGB vs. OMT 2 years RYGB led to remission from CKD in 81.9%

and remission from albuminuria in 84%.



Metabolites 2022, 12, 967 8 of 14

Table 1. Cont.

Reference N Intervention Follow-Up Results

Studies using mGFR

Chagnac et al. [18] 8 patients and
9 controls gastroplasty 12 months

Patients with obesity had hyperfiltration and
increased RPF flow at baseline. After surgery,

GFR and RPF were both decreased.

Friedman et al. [55] 36 patients type of surgery not
mentioned ~10 months Reduction in hyperfiltration following

bariatric surgery.

Clerte et al. [56] 16 patients RYGB or SG 6 months
mGFR increased in patients who had reduced

GFR at baseline, and decreased in patients
who had hyperfiltration at baseline.

Solini et al. [57] 25 non-diabetic patients RYGB 1 years mGFR remained stable; mGFR/BSA
was increased.

BS: bariatric surgery; e/mGFR: estimated/measured glomerular filtration rate; GB: gastric banding, OMT: optimal
medical treatment; RPF: renal plasma flow; RYGB: Roux-en-Y gastric bypass; LSG: laparoscopic sleeve gastrectomy;
ESKD: end-stage kidney disease; VBG: vertical banded gastroplasty; CKD: chronic kidney disease; CKD-EPI:
chronic kidney disease epidemiology collaboration; BSA: body surface area.

2.7. Bariatric Surgery Decreases Renal Sinus Fat (RSF)

Obesity is associated with ectopic fat deposition. The accumulation of fat in the
renal sinus (i.e., the perirenal hilum region at the medial border of the kidney where
the ureter and the vessels enter the kidney), has been associated with higher systolic
blood pressure, a higher number of antihypertensive drugs needed [62,63], a decreased
GFR [62,64], and microalbuminuria [65]. From a pathophysiologic standpoint, it has
been suggested that excessive fat accumulation in this specific fat depot would result in
increased intra-abdominal pressure and the compression of the low-pressure renal venous
structures [66,67], which would lead to the alteration of the renal hemodynamics, possibly
by the activation of the renin angiotensin aldosterone system (RAAS) [67]. While several
studies have shown that RSF is increased in patients with obesity, in a recent study we
showed for the first time that following bariatric surgery, RSF is decreased [68]. Importantly,
this decrease was associated with a remission from hypertension following bariatric surgery
and a decrease in the number of antihypertensive drugs needed [68]. On the contrary,
we could not detect any association with renal function, but in this study only eGFR
data—rather than mGFR data—were available [68].

2.8. Renal Metabolism and Perfusion before and after Bariatric Surgery

Positron emission tomography (PET) represents the current gold standard for the
assessment of tissue metabolic rates in humans in vivo. [18F]FDG is the most widely used
PET tracer assessing glucose uptake rates [69], but there are several other tracers that can
be used for assessing different aspects of metabolism and perfusion [70–72]. The various
PET tracers used in the study of renal function have recently been reviewed elsewhere [72].
From a metabolic perspective, in a renal 14(R,S)-[18F]Fluoro-6-thia-heptadecanoic acid
([18F]FTHA) PET study, we showed that renal free fatty acid (FFA) uptake was higher in
patients with obesity compared to lean individuals and that six months following bariatric
surgery renal FFA uptake was still high (and not normalized) because of the ongoing
catabolic state [73]. In the same study, renal volume, renal density, and renal perfusion were
evaluated with computerized tomography/magnetic resonance imaging and [15O]-H2O-
PET, respectively. Along with the well-known enlargement of visceral organs in obesity,
patients with obesity also had a larger renal volume and decreased renal tissue density.
Whereas there were no differences in renal perfusion per 100 mL of tissue volume between
lean and obese individuals, total renal blood flow (thus accounting for renal volume) was
larger in patients with obesity. Six-months following bariatric surgery, total renal blood
flow (mL/min) and renal volume were significantly decreased, whereas renal density was
increased, suggestive of the lower intrarenal accumulation of water and/or lipids [73].
The eGFR (ml/min) was also higher in patients with obesity and decreased following
weight loss. Taken together, this study demonstrated via imaging that obesity leads to
structural, metabolic, and hemodynamic renal changes, and that six-months following
bariatric surgery these alterations (eGFR, total renal blood flow, renal volume, and renal
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density) are partly reversed, thereby attenuating the risk for the progression of obesity-
induced chronic kidney disease.

Thus far, no study has assessed renal glucose metabolism using [18F]FDG-PET, but
work is being carried out at the Turku PET Centre to address this aspect.

2.9. Bariatric Surgery and Nephrolithiasis

Nephrolithiasis occurs as a consequence of the crystallization of solutes from urine to
form stones. Obesity represents a risk factor for nephrolithiasis [74], but it seems that this
risk is further increased following malabsorptive bariatric surgery.

From a mechanistic standpoint, hyperoxaluria is a key element for the increased
risk of nephrolithiasis. Normally, in the intestinal lumen, dietary calcium binds with
oxalate to form an insoluble complex which is then excreted in the feces. This leaves a
limited quantity of oxalate available for absorption. However, the malabsorption and
steatorrhea that often follow extensive intestinal bypass procedures cause intraluminal
calcium to bind preferentially with fatty acids, leaving larger quantities of soluble oxalate
for absorption. Moreover, the colonic absorption of oxalate is also increased due to the
intraluminal and mucosal alterations caused by the entry of malabsorbed fatty acids and
bile salts into the colon [75]. Previous research has shown that cases of hyperoxaluria
are more frequently observed in patients who have undergone RYGB or biliopancreatic
diversion with a duodenal switch compared to morbidly obese patients who have not
undergone surgery [76].

Apart from increased urinary oxalate, calcium oxalate supersaturation, decreased uri-
nary citrate, and decreased total urinary volume postoperatively have also been identified
as risk factors for nephrolithiasis after RYGB [77].

On the contrary, a low incidence of kidney stones has generally been observed in
patients who have undergone SG or other restrictive procedures such as adjustable gastric
banding [78]. A retrospective study evaluated the 24-h urine profiles of patients with
obesity and a history of nephrolithiasis who underwent either RYGB or SG. The results
showed that the RYGB group had significant increases in oxalate and decreases in citrate
urinary excretion, while the SG group had decreased oxalate excretion and stable citrate
excretion [79]. The examination of the rate of nephrolithiasis after laparoscopic RYGB versus
SG showed that patients who underwent RYGB had a higher incidence of nephrolithiasis
compared to those who underwent SG [80].

Importantly, a study by Semins et al. showed that following a restrictive operation
(in this study gastric banding), a significantly lower incidence rate of upper urinary tract
lithiasis occurred in the surgery-treated group compared to the control group of obese
patients during the 2-year follow-up [81]. Thus, in patients with a significant history of
nephrolithiasis, restrictive operations should be considered.

2.10. Acute Kidney Injury (AKI) following Bariatric Surgery

It is important to note that acute kidney injury (AKI) can ensue in the post-operative
setting following bariatric surgery [82]. Risk factors for the development of AKI are a high
weight, significant co-morbidities, and the use of nephrotoxic agents [82]. Additionally,
following prolonged interventions, rhabdomyolysis has been described as one of the
mechanisms leading to AKI, but nowadays the broad use of BS by specialized teams
has substantially decreased the possible length of BS interventions to only 1–2 h, thus
substantially decreasing the risk of rhabdomyolysis.

2.11. Future Perspectives

Obesity represents a significant independent risk factor for CKD, but bariatric-surgery-
induced weight loss, among its other beneficial effects, can reduce glomerular hyperfil-
tration and restore renal function (Figure 1). It is important to underline that based on
the available literature, bariatric surgery is a means of achieving significant and sustained
weight loss through which improvements in renal function also occur. Whether bariatric
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surgery induces weight-loss-independent effects that improve renal function is currently
not known, but it has been suggested by Scheurlen and colleagues based on the fact that
in their meta-analysis, a change in body weight was not associated with an improvement
in renal outcomes [61]. Moreover, in most studies, comparisons between restrictive and
malabsorptive effects on renal function have not been conducted, probably because of
small samples sizes and the belief that bariatric-surgery-induced renal outcomes are solely
ascribed to weight loss. In the elegant study by Yoshino et al., the authors demonstrated
that the beneficial metabolic effects of RYGB can be ascribed solely to weight loss itself
(rather than to any weight-loss-independent effects) [83]. Unfortunately, in the above-
mentioned study, the renal outcomes following bariatric surgery and diet intervention
were not assessed, and, to the best of our knowledge, no head-to-head comparison of the
effects of bariatric surgery versus matched diet-induced weight loss on renal outcomes
has been carried out so far. Thus, in order to answer these questions, further investigation
is warranted.
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Figure 1. Following bariatric-surgery-induced weight loss, visceral adipose tissue deposits are
decreased, as well as renal sinus fat deposits. The decrease in the former contributes to a favorable
adipocytokine profile, reduction in inflammatory cytokines, and reduction in ROS production, while
the latter might lead to a less-activated RAAS. Decreased total renal blood flow has also been
described following bariatric-surgery-induced weight loss. Clinically, following bariatric surgery,
the glomerular filtration rate is decreased in patients with glomerular hyperfiltration and increased
in patients who already have a more advanced stage of chronic kidney disease. In both stages,
albuminuria is decreased. These favorable outcomes ultimately decrease the rate of progression
towards a more advanced stage of chronic kidney disease.

In this article we also reviewed the difficulties in assessing renal function in obesity and
following substantial weight loss. Even though measuring GFR is the preferred method
of assessing renal function, due to its technical difficulty, this is typically only carried
out in specialized centers or for research purposes. The contemporaneous assessment
of albuminuria along with creatinine or cystatin-c values provides a valuable approach
for large studies and scenarios wherein it is not possible to measure GFR. Recently, more
economic and less invasive methods have been proposed for the measurement of GFR.
These procedures involve the determination of the iohexol concentration from capillary
blood samples rather than repeated blood samplings by venipuncture [84,85]. These
methods could be available on a large scale in the near future, enabling the measurement
of GFR in patients with morbid obesity.
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3. Conclusions

Bariatric-surgery-induced weight loss is an effective means to ameliorate and preserve
renal function in patients with obesity. The amelioration of renal and systemic inflammation;
a favorable adipocytokine profile; and a reduction in the hyperfiltration state, total renal
perfusion, and renal sinus fat are either established or plausible mechanisms through which
bariatric-surgery-induced weight loss reverses the progression of chronic kidney disease
in patients with obesity. Although an increased risk of nephrolithiasis occurs following
malabsorptive interventions, and there is a risk of AKI following bariatric surgery, these
complications by no means outweigh the renal benefits of bariatric surgery.

Author Contributions: Design, D.M. and E.R.; data collection, D.M., M.N., P.D., J.R., N.T. and E.R;
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guarantor of this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moriconi, D.; Manca, M.L.; Anselmino, M.; Rebelos, E.; Bellini, R.; Taddei, S.; Ferrannini, E.; Nannipieri, M. Predictors of type

2 diabetes relapse after Roux-en-Y Gastric Bypass: A ten-year follow-up study. Diabetes Metab. 2021, 48, 101282. [CrossRef]
[PubMed]

2. Wilhelm, S.; Young, J.; Kale-Pradhan, P. Effect of bariatric surgery on hypertension: A meta-analysis. Ann. Pharm. 2014,
48, 674–682. [CrossRef] [PubMed]

3. Haroun, M.K.; Jaar, B.; Hoffman, S.C.; Comstock, G.W.; Klag, M.J.; Coresh, J. Risk factors for chronic kidney disease: A prospective
study of 23,534 men and women in Washington County, Maryland. J. Am. Soc. Nephrol. 2003, 14, 2934–2941. [CrossRef] [PubMed]

4. Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between obesity and kidney disease: A systematic review
and meta-analysis. Kidney Int. 2008, 73, 19–33. [CrossRef]

5. De Nicola, L.; Cozzolino, M.; Genovesi, S.; Gesualdo, L.; Grandaliano, G.; Pontremoli, R. Can SGLT2 inhibitors answer unmet
therapeutic needs in chronic kidney disease? J. Nephrol. 2022, 35, 1605–1618. [CrossRef]

6. Chew-Harris, J.S.C.; Florkowski, C.M.; George, P.M.; Elmslie, J.L.; Endre, Z.H. The relative effects of fat versus muscle mass on
cystatin C and estimates of renal function in healthy young men. Ann. Clin. Biochem. 2013, 50, 39–46. [CrossRef]

7. Thoenes, M.; Reil, J.-C.; Khan, B.V.; Bramlage, P.; Volpe, M.; Kirch, W.; Böhm, M. Abdominal obesity is associated with
microalbuminuria and an elevated cardiovascular risk profile in patients with hypertension. Vasc. Health Risk Manag. 2009,
5, 577–585. [CrossRef]

8. Foster, M.C.; Hwang, S.-J.; Massaro, J.M.; Hoffmann, U.; DeBoer, I.H.; Robins, S.J.; Vasan, R.S.; Fox, C.S. Association of
subcutaneous and visceral adiposity with albuminuria: The Framingham Heart Study. Obesity 2011, 19, 1284–1289. [CrossRef]

9. Lu, J.L.; Molnar, M.Z.; Naseer, A.; Mikkelsen, M.K.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of age and BMI with kidney
function and mortality: A cohort study. Lancet Diabetes Endocrinol. 2015, 3, 704–714. [CrossRef]

10. Schwartz, D.S.; Factor, S.M.; Schwartz, J.D.; Petrosian, E.; Blitz, A.; McLoughlin, D.; Tellis, V.; Frame, R.; Brodman, R.F. Histological
evaluation of the inferior epigastric artery in patients with known atherosclerosis. Eur. J. Cardio. Thorac. Surg. J. Eur. Assoc. Cardio.
Thorac. Surg. 1992, 6, 438–441. [CrossRef]

11. Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; Calderon-Margalit, R. Body mass index in 1.2 million
adolescents and risk for end-stage renal disease. Arch. Intern. Med. 2012, 172, 1644–1650. [CrossRef] [PubMed]

12. Lu, J.L.; Kalantar-Zadeh, K.; Ma, J.Z.; Quarles, L.D.; Kovesdy, C.P. Association of body mass index with outcomes in patients with
CKD. J. Am. Soc. Nephrol. 2014, 25, 2088–2096. [CrossRef]

13. Mascali, A.; Franzese, O.; Nisticò, S.; Campia, U.; Lauro, D.; Cardillo, C.; Di Daniele, N.; Tesauro, M. Obesity and kidney disease:
Beyond the hyperfiltration. Int. J. Immunopathol. Pharm. 2016, 29, 354–363. [CrossRef] [PubMed]

14. Kasiske, B.L.; Napier, J. Glomerular sclerosis in patients with massive obesity. Am. J. Nephrol. 1985, 5, 45–50. [CrossRef] [PubMed]
15. Puelles, V.G.; Zimanyi, M.A.; Samuel, T.; Hughson, M.D.; Douglas-Denton, R.N.; Bertram, J.F.; Armitage, J.A. Estimating

individual glomerular volume in the human kidney: Clinical perspectives. Nephrol. Dial. Transpl. Publ. Eur. Dial. Transpl. Assoc.
Eur. Ren. Assoc. 2012, 27, 1880–1888. [CrossRef] [PubMed]

16. Samuel, T.; Hoy, W.E.; Douglas-Denton, R.; Hughson, M.D.; Bertram, J.F. Determinants of glomerular volume in different cortical
zones of the human kidney. J. Am. Soc. Nephrol. 2005, 16, 3102–3109. [CrossRef] [PubMed]

17. Tobar, A.; Ori, Y.; Benchetrit, S.; Milo, G.; Herman-Edelstein, M.; Zingerman, B.; Lev, N.; Gafter, U.; Chagnac, A. Proximal tubular
hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PLoS ONE 2013,
8, e75547. [CrossRef]

18. Chagnac, A.; Weinstein, T.; Herman, M.; Hirsh, J.; Gafter, U.; Ori, Y. The effects of weight loss on renal function in patients with
severe obesity. J. Am. Soc. Nephrol. 2003, 14, 1480–1486. [CrossRef]

http://doi.org/10.1016/j.diabet.2021.101282
http://www.ncbi.nlm.nih.gov/pubmed/34547450
http://doi.org/10.1177/1060028014529260
http://www.ncbi.nlm.nih.gov/pubmed/24662112
http://doi.org/10.1097/01.ASN.0000095249.99803.85
http://www.ncbi.nlm.nih.gov/pubmed/14569104
http://doi.org/10.1038/sj.ki.5002586
http://doi.org/10.1007/s40620-022-01336-7
http://doi.org/10.1258/acb.2012.011241
http://doi.org/10.2147/vhrm.s5207
http://doi.org/10.1038/oby.2010.308
http://doi.org/10.1016/S2213-8587(15)00128-X
http://doi.org/10.1016/1010-7940(92)90069-A
http://doi.org/10.1001/2013.jamainternmed.85
http://www.ncbi.nlm.nih.gov/pubmed/23108588
http://doi.org/10.1681/ASN.2013070754
http://doi.org/10.1177/0394632016643550
http://www.ncbi.nlm.nih.gov/pubmed/27044633
http://doi.org/10.1159/000166902
http://www.ncbi.nlm.nih.gov/pubmed/3970078
http://doi.org/10.1093/ndt/gfr539
http://www.ncbi.nlm.nih.gov/pubmed/21984554
http://doi.org/10.1681/ASN.2005010123
http://www.ncbi.nlm.nih.gov/pubmed/16107583
http://doi.org/10.1371/journal.pone.0075547
http://doi.org/10.1097/01.ASN.0000068462.38661.89


Metabolites 2022, 12, 967 12 of 14

19. Vallon, V.; Richter, K.; Blantz, R.C.; Thomson, S.; Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus:
Potential role of tubular reabsorption. J. Am. Soc. Nephrol. 1999, 10, 2569–2576. [CrossRef]

20. D’Agati, V.D.; Chagnac, A.; de Vries, A.P.J.; Levi, M.; Porrini, E.; Herman-Edelstein, M.; Praga, M. Obesity-related glomerulopathy:
Clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 2016, 12, 453–471. [CrossRef]

21. Tsuboi, N.; Okabayashi, Y. The Renal Pathology of Obesity: Structure-Function Correlations. Semin. Nephrol. 2021, 41, 296–306.
[CrossRef] [PubMed]

22. Kambham, N.; Markowitz, G.S.; Valeri, A.M.; Lin, J.; D’Agati, V.D. Obesity-related glomerulopathy: An emerging epidemic.
Kidney Int. 2001, 59, 1498–1509. [CrossRef] [PubMed]

23. Brenner, B.M.; Lawler, E.V.; Mackenzie, H.S. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int. 1996,
49, 1774–1777. [CrossRef] [PubMed]

24. Tonneijck, L.; Muskiet, M.H.A.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.L.; van Raalte, D.H.; Joles, J.A. Glomerular
Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039.
[CrossRef]

25. Kanbay, M.; Ertuglu, L.A.; Afsar, B.; Ozdogan, E.; Kucuksumer, Z.S.; Ortiz, A.; Covic, A.; Kuwabara, M.; Cherney, D.Z.I.; Van
Raalte, D.H.; et al. Renal hyperfiltration defined by high estimated glomerular filtration rate: A risk factor for cardiovascular
disease and mortality. Diabetes Obes. Metab. 2019, 21, 2368–2383. [CrossRef]

26. Nelson, R.G.; Bennett, P.H.; Beck, G.J.; Tan, M.; Knowler, W.C.; Mitch, W.E.; Hirschman, G.H.; Myers, B.D. Development and
progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group.
N. Engl. J. Med. 1996, 335, 1636–1642. [CrossRef]

27. Naderpoor, N.; Lyons, J.G.; Mousa, A.; Ranasinha, S.; de Courten, M.P.J.; Soldatos, G.; De Courten, B. Higher glomerular filtration
rate is related to insulin resistance but not to obesity in a predominantly obese non-diabetic cohort. Sci. Rep. 2017, 7, 45522.
[CrossRef]

28. Yudkin, J.S. Adipose tissue, insulin action and vascular disease: Inflammatory signals. Int. J. Obes. Relat. Metab. Disord. J. Int.
Assoc. Study Obes. 2003, 27 (Suppl. S3), S25–S28. [CrossRef]

29. Antonioli, L.; Moriconi, D.; Masi, S.; Bottazzo, D.; Pellegrini, C.; Fornai, M.; Anselmino, M.; Ferrannini, E.; Blandizzi, C.;
Taddei, S.; et al. Differential Impact of Weight Loss and Glycemic Control on Inflammasome Signaling. Obesity 2020, 28, 609–615.
[CrossRef]

30. Iantorno, M.; Campia, U.; Di Daniele, N.; Nistico, S.; Forleo, G.B.; Cardillo, C.; Tesauro, M. Obesity, inflammation and endothelial
dysfunction. J. Biol. Regul. Homeost. Agents 2014, 28, 169–176.

31. Jung, U.J.; Choi, M.-S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity,
inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [CrossRef]
[PubMed]

32. Moriconi, D.; Antonioli, L.; Masi, S.; Bellini, R.; Pellegrini, C.; Rebelos, E.; Taddei, S.; Nannipieri, M. Glomerular hyperfiltration in
morbid obesity: Role of the inflammasome signalling. Nephrology 2022, 27, 673–680. [CrossRef] [PubMed]

33. Zhang, Y.; Chua, S.J. Leptin Function and Regulation. Compr. Physiol. 2017, 8, 351–369. [CrossRef]
34. Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and

Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [CrossRef] [PubMed]
35. Sikorska, D.; Grzymislawska, M.; Roszak, M.; Gulbicka, P.; Korybalska, K.; Witowski, J. Simple obesity and renal function.

J. Physiol. Pharm. J. Pol. Physiol. Soc. 2017, 68, 175–180.
36. Sureshbabu, A.; Muhsin, S.A.; Choi, M.E. TGF-β signaling in the kidney: Profibrotic and protective effects. Am. J. Physiol. Ren.

Physiol. 2016, 310, F596–F606. [CrossRef]
37. Wu, Y.; Liu, Z.; Xiang, Z.; Zeng, C.; Chen, Z.; Ma, X.; Li, L. Obesity-related glomerulopathy: Insights from gene expression profiles

of the glomeruli derived from renal biopsy samples. Endocrinology 2006, 147, 44–50. [CrossRef]
38. Chen, H.-M.; Liu, Z.-H.; Zeng, C.-H.; Li, S.-J.; Wang, Q.-W.; Li, L.-S. Podocyte lesions in patients with obesity-related glomeru-

lopathy. Am. J. Kidney Dis. Off. J. Natl. Kidney Found 2006, 48, 772–779. [CrossRef]
39. Yang, S.; Cao, C.; Deng, T.; Zhou, Z. Obesity-Related Glomerulopathy: A Latent Change in Obesity Requiring More Attention.

Kidney Blood Press. Res. 2020, 45, 510–522. [CrossRef]
40. Tang, C.; Cai, J.; Dong, Z. Mitochondrial dysfunction in obesity-related kidney disease: A novel therapeutic target. Kidney Int.

2016, 90, 930–933. [CrossRef]
41. Su, H.; Wan, C.; Song, A.; Qiu, Y.; Xiong, W.; Zhang, C. Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. Adv. Exp.

Med. Biol. 2019, 1165, 585–604. [CrossRef] [PubMed]
42. Xu, X.; Huang, X.; Zhang, L.; Huang, X.; Qin, Z.; Hua, F. Adiponectin protects obesity-related glomerulopathy by inhibiting

ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol. 2021, 22, 218. [CrossRef] [PubMed]
43. Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.;

Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [CrossRef]
44. López-Martínez, M.; Luis-Lima, S.; Morales, E.; Navarro-Díaz, M.; Negrín-Mena, N.; Folgueras, T.; Escamilla, B.; Estupiñán, S.;

Delgado-Mallén, P.; Marrero-Miranda, D.; et al. The estimation of GFR and the adjustment for BSA in overweight and obesity: A
dreadful combination of two errors. Int. J. Obes. 2020, 44, 1129–1140. [CrossRef]

http://doi.org/10.1681/ASN.V10122569
http://doi.org/10.1038/nrneph.2016.75
http://doi.org/10.1016/j.semnephrol.2021.06.002
http://www.ncbi.nlm.nih.gov/pubmed/34715960
http://doi.org/10.1046/j.1523-1755.2001.0590041498.x
http://www.ncbi.nlm.nih.gov/pubmed/11260414
http://doi.org/10.1038/ki.1996.265
http://www.ncbi.nlm.nih.gov/pubmed/8743495
http://doi.org/10.1681/ASN.2016060666
http://doi.org/10.1111/dom.13831
http://doi.org/10.1056/NEJM199611283352203
http://doi.org/10.1038/srep45522
http://doi.org/10.1038/sj.ijo.0802496
http://doi.org/10.1002/oby.22734
http://doi.org/10.3390/ijms15046184
http://www.ncbi.nlm.nih.gov/pubmed/24733068
http://doi.org/10.1111/nep.14077
http://www.ncbi.nlm.nih.gov/pubmed/35681274
http://doi.org/10.1002/cphy.c160041
http://doi.org/10.3389/fendo.2021.585887
http://www.ncbi.nlm.nih.gov/pubmed/34084149
http://doi.org/10.1152/ajprenal.00365.2015
http://doi.org/10.1210/en.2005-0641
http://doi.org/10.1053/j.ajkd.2006.07.025
http://doi.org/10.1159/000507784
http://doi.org/10.1016/j.kint.2016.07.045
http://doi.org/10.1007/978-981-13-8871-2_29
http://www.ncbi.nlm.nih.gov/pubmed/31399986
http://doi.org/10.1186/s12882-021-02391-1
http://www.ncbi.nlm.nih.gov/pubmed/34107901
http://doi.org/10.7326/0003-4819-150-9-200905050-00006
http://doi.org/10.1038/s41366-019-0476-z


Metabolites 2022, 12, 967 13 of 14

45. Donadio, C.; Moriconi, D.; Berta, R.; Anselmino, M. Estimation of Urinary Creatinine Excretion and Prediction of Renal Function
in Morbidly Obese Patients: New Tools from Body Composition Analysis. Kidney Blood Press. Res. 2017, 42, 629–640. [CrossRef]
[PubMed]

46. Davidson, L.E.; Yu, W.; Goodpaster, B.H.; DeLany, J.P.; Widen, E.; Lemos, T.; Strain, G.W.; Pomp, A.; Courcoulas, A.P.; Lin, S.; et al.
Fat-Free Mass and Skeletal Muscle Mass Five Years After Bariatric Surgery. Obesity 2018, 26, 1130–1136. [CrossRef] [PubMed]

47. Okura, T.; Jotoku, M.; Irita, J.; Enomoto, D.; Nagao, T.; Desilva, V.R.; Yamane, S.; Pei, Z.; Kojima, S.; Hamano, Y.; et al. Association
between cystatin C and inflammation in patients with essential hypertension. Clin. Exp. Nephrol. 2010, 14, 584–588. [CrossRef]

48. Chang, A.R.; Chen, Y.; Still, C.; Wood, G.C.; Kirchner, H.L.; Lewis, M.; Kramer, H.; Hartle, J.E.; Carey, D.; Appel, L.J.; et al. Bariatric
surgery is associated with improvement in kidney outcomes. Kidney Int. 2016, 90, 164–171. [CrossRef] [PubMed]

49. Shulman, A.; Peltonen, M.; Sjöström, C.D.; Andersson-Assarsson, J.C.; Taube, M.; Sjöholm, K.; Le Roux, C.W.; Carlsson, L.M.S.;
Svensson, P.-A. Incidence of end-stage renal disease following bariatric surgery in the Swedish Obese Subjects Study. Int. J. Obes.
2018, 42, 964–973. [CrossRef]

50. Friedman, A.N.; Wahed, A.S.; Wang, J.; Courcoulas, A.P.; Dakin, G.; Hinojosa, M.W.; Kimmel, P.L.; Mitchell, J.E.; Pomp, A.; Pories,
W.J.; et al. Effect of Bariatric Surgery on CKD Risk. J. Am. Soc. Nephrol. 2018, 29, 1289–1300. [CrossRef]

51. Funes, D.R.; Blanco, D.G.; Gómez, C.O.; Frieder, J.S.; Menzo, E.L.; Szomstein, S.; White, K.P.; Rosenthal, R.J. Metabolic Surgery
Reduces the Risk of Progression From Chronic Kidney Disease to Kidney Failure. Ann. Surg. 2019, 270, 511–518. [CrossRef]
[PubMed]

52. Coleman, K.J.; Shu, Y.-H.; Fischer, H.; Johnson, E.; Yoon, T.K.; Taylor, B.; Imam, T.; DeRose, S.; Haneuse, S.; Herrinton, L.J.; et al.
Bariatric Surgery and Risk of Death in Persons with Chronic Kidney Disease. Ann. Surg. 2021. [CrossRef] [PubMed]

53. Holcomb, C.N.; Goss, L.E.; Almehmi, A.; Grams, J.M.; Corey, B.L. Bariatric surgery is associated with renal function improvement.
Surg. Endosc. 2018, 32, 276–281. [CrossRef] [PubMed]

54. Cohen, R.V.; Pereira, T.V.; Aboud, C.M.; Petry, T.B.Z.; Lopes Correa, J.L.; Schiavon, C.A.; Pompílio, C.E.; Pechy, F.N.Q.; Silva,
A.C.C.D.C.; De Melo, F.L.G.; et al. Effect of Gastric Bypass vs Best Medical Treatment on Early-Stage Chronic Kidney Disease in
Patients With Type 2 Diabetes and Obesity: A Randomized Clinical Trial. JAMA Surg. 2020, 155, e200420. [CrossRef]

55. Friedman, A.N.; Moe, S.; Fadel, W.F.; Inman, M.; Mattar, S.G.; Shihabi, Z.; Quinney, S.K. Predicting the glomerular filtration rate
in bariatric surgery patients. Am. J. Nephrol. 2014, 39, 8–15. [CrossRef]

56. Clerte, M.; Wagner, S.; Carette, C.; Brodin-Sartorius, A.; Vilaine, É.; Alvarez, J.-C.; Abe, E.; Barsamian, C.; Czernichow, S.; Massy,
Z.A. The measured glomerular filtration rate (mGFR) before and 6 months after bariatric surgery: A pilot study. Nephrol. Ther.
2017, 13, 160–167. [CrossRef]

57. Solini, A.; Seghieri, M.; Santini, E.; Giannini, L.; Biancalana, E.; Taddei, S.; Volterrani, D.; Bruno, R.M. Renal Resistive Index
Predicts Post-Bariatric Surgery Renal Outcome in Nondiabetic Individuals with Severe Obesity. Obesity 2019, 27, 68–74. [CrossRef]

58. Li, K.; Zou, J.; Ye, Z.; Di, J.; Han, X.; Zhang, H.; Liu, W.; Ren, Q.; Zhang, P. Effects of Bariatric Surgery on Renal Function in Obese
Patients: A Systematic Review and Meta Analysis. PLoS ONE 2016, 11, e0163907. [CrossRef]

59. Bilha, S.C.; Nistor, I.; Nedelcu, A.; Kanbay, M.; Scripcariu, V.; Timofte, D.; Siriopol, D.; Covic, A. The Effects of Bariatric Surgery
on Renal Outcomes: A Systematic Review and Meta-analysis. Obes. Surg. 2018, 28, 3815–3833. [CrossRef]

60. Lee, Y.; Anvari, S.; Chu, M.M.; Lovrics, O.; Khondker, A.; Malhan, R.; Aditya, I.; Doumouras, A.G.; Walsh, M.; Hong, D.
Improvement of kidney function in patients with chronic kidney disease and severe obesity after bariatric surgery: A systematic
review and meta-analysis. Nephrology 2022, 27, 44–56. [CrossRef]

61. Scheurlen, K.M.; Probst, P.; Kopf, S.; Nawroth, P.P.; Billeter, A.T.; Müller-Stich, B.P. Metabolic surgery improves renal injury
independent of weight loss: A meta-analysis. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2019, 15, 1006–1020. [CrossRef]
[PubMed]

62. Foster, M.C.; Hwang, S.-J.; Porter, S.A.; Massaro, J.M.; Hoffmann, U.; Fox, C.S. Fatty kidney, hypertension, and chronic kidney
disease: The Framingham Heart Study. Hypertens 2011, 58, 784–790. [CrossRef] [PubMed]

63. Chughtai, H.L.; Morgan, T.M.; Rocco, M.; Stacey, B.; Brinkley, T.E.; Ding, J.; Nicklas, B.; Hamilton, C.; Hundley, W.G. Renal sinus
fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertens 2010,
56, 901–906. [CrossRef]

64. Spit, K.A.; Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Kramer, M.H.H.; Joles, J.A.; de Boer, A.; van Raalte, D.H. Renal sinus fat
and renal hemodynamics: A cross-sectional analysis. MAGMA 2020, 33, 73–80. [CrossRef]

65. Wagner, R.; Machann, J.; Lehmann, R.; Rittig, K.; Schick, F.; Lenhart, J.; Artunç, F.H.; Linder, K.; Claussen, C.D.; Schleicher, E.; et al.
Exercise-induced albuminuria is associated with perivascular renal sinus fat in individuals at increased risk of type 2 diabetes.
Diabetologia 2012, 55, 2054–2058. [CrossRef]

66. Dwyer, T.M.; Mizelle, H.L.; Cockrell, K.; Buhner, P. Renal sinus lipomatosis and body composition in hypertensive, obese rabbits.
Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study. Obes. 1995, 19, 869–874.

67. Montani, J.-P.; Carroll, J.F.; Dwyer, T.M.; Antic, V.; Yang, Z.; Dulloo, A.G. Ectopic fat storage in heart, blood vessels and kidneys
in the pathogenesis of cardiovascular diseases. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2004, 28 (Suppl. S4),
S58–S65. [CrossRef]

68. Moritz, E.; Dadson, P.; Saukko, E.; Honka, M.-J.; Koskensalo, K.; Seppälä, K.; Pekkarinen, L.; Moriconi, D.; Helmiö, M.;
Salminen, P.; et al. Renal Sinus Fat Is Expanded in Patients with Obesity and/or Hypertension and Reduced by Bariatric Surgery
Associated with Hypertension Remission. Metabolites 2022, 12, 617. [CrossRef]

http://doi.org/10.1159/000481630
http://www.ncbi.nlm.nih.gov/pubmed/28977791
http://doi.org/10.1002/oby.22190
http://www.ncbi.nlm.nih.gov/pubmed/29845744
http://doi.org/10.1007/s10157-010-0334-8
http://doi.org/10.1016/j.kint.2016.02.039
http://www.ncbi.nlm.nih.gov/pubmed/27181999
http://doi.org/10.1038/s41366-018-0045-x
http://doi.org/10.1681/ASN.2017060707
http://doi.org/10.1097/SLA.0000000000003456
http://www.ncbi.nlm.nih.gov/pubmed/31290766
http://doi.org/10.1097/SLA.0000000000004851
http://www.ncbi.nlm.nih.gov/pubmed/33914480
http://doi.org/10.1007/s00464-017-5674-y
http://www.ncbi.nlm.nih.gov/pubmed/28664440
http://doi.org/10.1001/jamasurg.2020.0420
http://doi.org/10.1159/000357231
http://doi.org/10.1016/j.nephro.2016.10.002
http://doi.org/10.1002/oby.22355
http://doi.org/10.1371/journal.pone.0163907
http://doi.org/10.1007/s11695-018-3416-4
http://doi.org/10.1111/nep.13958
http://doi.org/10.1016/j.soard.2019.03.013
http://www.ncbi.nlm.nih.gov/pubmed/31104957
http://doi.org/10.1161/HYPERTENSIONAHA.111.175315
http://www.ncbi.nlm.nih.gov/pubmed/21931075
http://doi.org/10.1161/HYPERTENSIONAHA.110.157370
http://doi.org/10.1007/s10334-019-00773-z
http://doi.org/10.1007/s00125-012-2551-z
http://doi.org/10.1038/sj.ijo.0802858
http://doi.org/10.3390/metabo12070617


Metabolites 2022, 12, 967 14 of 14

69. Rebelos, E.; Bucci, M.; Karjalainen, T.; Oikonen, V.; Bertoldo, A.; Hannukainen, J.C.; Virtanen, K.A.; Latva-Rasku, A.; Hirvonen, J.;
Heinonen, I.; et al. Insulin resistance is associated with enhanced brain glucose uptake during euglycemic hyperinsulinemia: A
large-scale PET cohort. Diabetes Care 2021, 44, 1–7. [CrossRef]

70. Rebelos, E.; Hirvonen, J.; Bucci, M.; Pekkarinen, L.; Nyman, M.; Hannukainen, J.C.; Iozzo, P.; Salminen, P.; Nummenmaa, L.;
Ferrannini, E.; et al. Brain free fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric surgery:
A positron emission tomography study. Diabetes Obes. Metab. 2020, 22, 1074–1082. [CrossRef]

71. Oldgren, J.; Laurila, S.; Åkerblom, A.; Latva-Rasku, A.; Rebelos, E.; Isackson, H.; Saarenhovi, M.; Eriksson, O.; Heurling, K.;
Johansson, E.; et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial
function and metabolism in patients with type 2 diabetes: A randomized, placebo-controlled, exploratory study. Diabetes Obes.
Metab. 2021, 23, 1505–1517. [CrossRef] [PubMed]

72. Amoabeng, K.A.; Laurila, S.; Juárez-Orozco, L.E.; Marthinsen, A.B.L.; Moczulski, D.; Rebelos, E.; Dadson, P. The utilization of
positron emission tomography in the evaluation of renal health and disease. Clin. Transl. Imaging 2022, 10, 59–69. [CrossRef]

73. Rebelos, E.; Dadson, P.; Oikonen, V.; Iida, H.; Hannukainen, J.C.; Iozzo, P.; Ferrannini, E.; Nuutila, P. Renal hemodynamics and
fatty acid uptake: Effects of obesity and weight loss. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E871–E878. [CrossRef] [PubMed]

74. Chang, A.R.; Grams, M.E.; Navaneethan, S.D. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int. Rep. 2017, 2, 261–270.
[CrossRef] [PubMed]

75. Canos, H.J.; Hogg, G.A.; Jeffery, J.R. Oxalate nephropathy due to gastrointestinal disorders. Can. Med. Assoc. J. 1981, 124, 729–733.
[PubMed]

76. Froeder, L.; Arasaki, C.H.; Malheiros, C.A.; Baxmann, A.C.; Heilberg, I.P. Response to dietary oxalate after bariatric surgery. Clin.
J. Am. Soc. Nephrol. 2012, 7, 2033–2040. [CrossRef]

77. Park, A.M.; Storm, D.W.; Fulmer, B.R.; Still, C.D.; Wood, G.C.; Hartle, J.E. 2nd. A prospective study of risk factors for
nephrolithiasis after Roux-en-Y gastric bypass surgery. J. Urol. 2009, 182, 2334–2339. [CrossRef]

78. Chen, T.; Godebu, E.; Horgan, S.; Mirheydar, H.S.; Sur, R.L. The effect of restrictive bariatric surgery on urolithiasis. J. Endourol.
2013, 27, 242–244. [CrossRef]

79. Uy, M.; Di Lena, R.; Hoogenes, J.; Alharbi, B.; Gmora, S.; Shayegan, B.; Matsumoto, E.D. Bariatric Surgery in Patients with
a History of Nephrolithiasis: 24-h Urine Profiles and Radiographic Changes After Roux-en-Y Gastric Bypass Versus Sleeve
Gastrectomy. Obes. Surg. 2021, 31, 1673–1679. [CrossRef]

80. Mishra, T.; Shapiro, J.B.; Ramirez, L.; Kallies, K.J.; Kothari, S.N.; Londergan, T.A. Nephrolithiasis after bariatric surgery: A
comparison of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy. Am. J. Surg. 2020, 219, 952–957. [CrossRef]

81. Semins, M.J.; Matlaga, B.R.; Shore, A.D.; Steele, K.; Magnuson, T.; Johns, R.; Makary, M.A. The effect of gastric banding on kidney
stone disease. Urology 2009, 74, 746–749. [CrossRef] [PubMed]

82. Thakar, C.V. Perioperative acute kidney injury. Adv. Chronic. Kidney Dis. 2013, 20, 67–75. [CrossRef] [PubMed]
83. Yoshino, M.; Kayser, B.D.; Yoshino, J.; Stein, R.I.; Reeds, D.; Eagon, J.C.; Eckhouse, S.R.; Watrous, J.D.; Jain, M.; Knight, R.; et al.

Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N. Engl. J. Med. 2020, 383, 721–732. [CrossRef]
84. Staples, A.; Wong, C.; Schwartz, G.J. Iohexol-measured glomerular filtration rate in children and adolescents with chronic kidney

disease: A pilot study comparing venous and finger stick methods. Pediatr. Nephrol. 2019, 34, 459–464. [CrossRef] [PubMed]
85. Ion, V.; Legoff, C.; Cavalier, E.; Delanaye, P.; Servais, A.-C.; Muntean, D.-L.; Fillet, M. Determination of iohexol by capillary blood

microsampling and UHPLC-MS/MS. J. Pharm. Anal. 2019, 9, 259–265. [CrossRef]

http://doi.org/10.2337/dc20-1549
http://doi.org/10.1111/dom.13996
http://doi.org/10.1111/dom.14363
http://www.ncbi.nlm.nih.gov/pubmed/33625777
http://doi.org/10.1007/s40336-021-00469-2
http://doi.org/10.1152/ajpendo.00135.2019
http://www.ncbi.nlm.nih.gov/pubmed/31550182
http://doi.org/10.1016/j.ekir.2017.01.010
http://www.ncbi.nlm.nih.gov/pubmed/28439568
http://www.ncbi.nlm.nih.gov/pubmed/7471017
http://doi.org/10.2215/CJN.02560312
http://doi.org/10.1016/j.juro.2009.07.044
http://doi.org/10.1089/end.2012.0408
http://doi.org/10.1007/s11695-020-05178-9
http://doi.org/10.1016/j.amjsurg.2019.09.010
http://doi.org/10.1016/j.urology.2009.04.093
http://www.ncbi.nlm.nih.gov/pubmed/19683804
http://doi.org/10.1053/j.ackd.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23265598
http://doi.org/10.1056/NEJMoa2003697
http://doi.org/10.1007/s00467-018-4110-4
http://www.ncbi.nlm.nih.gov/pubmed/30315406
http://doi.org/10.1016/j.jpha.2019.06.003

	Introduction 
	Search Strategy and Selection Criteria 
	Structural and Functional Renal Alterations Occurring in the Context of Obesity 
	Glomerular Hyperfiltration in Severe Obesity Is the Trigger for the Development of ORG 
	The Difficulty in Evaluating GFR before and after Bariatric Surgery: The Limits of the GFR Estimation Formulas 
	The Effect of Bariatric Surgery on Estimated GFR and Albuminuria 
	Studies Using Measured GFR following Bariatric Surgery 
	Meta-Analysis of Renal Function and Bariatric Surgery 
	Bariatric Surgery Decreases Renal Sinus Fat (RSF) 
	Renal Metabolism and Perfusion before and after Bariatric Surgery 
	Bariatric Surgery and Nephrolithiasis 
	Acute Kidney Injury (AKI) following Bariatric Surgery 
	Future Perspectives 

	Conclusions 
	References

