28 research outputs found
Design optimization of RF lines in vacuum environment for the MITICA experiment
This contribution regards the Radio Frequency (RF) transmission line of the Megavolt ITER Injector and Concept Advancement (MITICA) experiment. The original design considered copper coaxial lines of 1″ 5/8, but thermal simulations under operating conditions showed maximum temperatures of the lines at regime not compatible with the prescription of the component manufacturer. Hence, an optimization of the design was necessary. Enhancing thermal radiation and increasing the conductor size were considered for design optimization: thermal analyses were carried out to calculate the temperature of MITICA RF lines during operation, as a function of the emissivity value and of other geometrical parameters. Five coating products to increase the conductor surface emissivity were tested, measuring the outgassing behavior of the selected products and the obtained emissivity values
Overview on electrical issues faced during the SPIDER experimental campaigns
SPIDER is the full-scale prototype of the ion source of the ITER Heating
Neutral Beam Injector, where negative ions of Hydrogen or Deuterium are
produced by a RF generated plasma and accelerated with a set of grids up to
~100 keV. The Power Supply System is composed of high voltage dc power supplies
capable of handling frequent grid breakdowns, high current dc generators for
the magnetic filter field and RF generators for the plasma generation. During
the first 3 years of SPIDER operation different electrical issues were
discovered, understood and addressed thanks to deep analyses of the
experimental results supported by modelling activities. The paper gives an
overview on the observed phenomena and relevant analyses to understand them, on
the effectiveness of the short-term modifications provided to SPIDER to face
the encountered issues and on the design principle of long-term solutions to be
introduced during the currently ongoing long shutdown.Comment: 8 pages, 12 figures. Presented at SOFT 202
Type I interferon-mediated autoinflammation due to DNase II deficiency
Microbial nucleic acid recognition serves as the major stimulus to an antiviral response, implying a requirement to limit the misrepresentation of self nucleic acids as non-self and the induction of autoinflammation. By systematic screening using a panel of interferon-stimulated genes we identify two siblings and a singleton variably demonstrating severe neonatal anemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies. In both families we identify biallelic mutations in DNASE2, associated with a loss of DNase II endonuclease activity. We record increased interferon alpha protein levels using digital ELISA, enhanced interferon signaling by RNA-Seq analysis and constitutive upregulation of phosphorylated STAT1 and STAT3 in patient lymphocytes and monocytes. A hematological disease transcriptomic signature and increased numbers of erythroblasts are recorded in patient peripheral blood, suggesting that interferon might have a particular effect on hematopoiesis. These data define a type I interferonopathy due to DNase II deficiency in humans
The influence of grid positioning on the beam optics in the neutral beam injectors for ITER
none5norestrictedVeltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, GianluigiVeltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluig
Manufacturing and Testing of Grid Prototypes for the ITER Neutral Beam Injectors
A comprehensive set of research and development activities has been carried out at Consorzio RFX regarding the construction of the grids for the ITER neutral beam injectors, in order to validate the proposed manufacturing methodologies, to further develop the details of the engineering design, and to adapt existing production techniques to the specific case. In the framework of this research and development program, two multichannel prototypes have been designed and manufactured. These prototypes feature all the possible manufacturing issues of the source for production of ion of deuterium extracted from RF plasma (SPIDER) grids. In fact, they reproduce the geometry of the extraction grid (EG) for SPIDER by having the same thickness, same cooling channels, same distributors, same aperture shape, and same slots for the magnets of an EG segment. The differences from an actual EG segment regard only the dimensions, i.e., reduced width (one fourth) and height (one half). The construction and testing of these prototypes are here described in detail
Lifetime assessment of the modified grounded grid in the negative ion source SPIDER
In a nuclear fusion reactor, some components of the system are subjected to huge thermal loads. These components, such as grids, neutralizers, calorimeters, ducts, divertors, blankets etc. have to be actively cooled in order to avoid damage, functionality problems and specially to ensure their reliability. The design process of such components requires taking into account several physical phenomena, with the goal of not only satisfying the functionality conditions, but also with a focus on the structural verifications and component lifetime. For assessment of the structural design for components in ITER, the ITER Structural Design Criteria for In-vessel Components (SDC-IC) represent the reference verification criteria. The aim of this work is to investigate the relationship between the cooling system performance and the fatigue life. In this work a generalized framework for the evaluation of cooling system components is presented, taking into account the necessary input parameters, performing numerical analyses, division of component into several interest regions and assessing the fatigue life. The performed numerical analyses are a set of coupled CFD and thermo-structural analyses. A case study is presented for a critical component, the Grounded Grid (GG), inside the SPIDER beam source experiment at Consorzio RFX, Padova, Italy. The presented test case includes cooling system effectiveness analysis, assessment of the temperature distribution on housing during operations, mapping the pressure distribution inside the cooling system and finally assessment of the maximum number of allowed cycles
Putative modifier genes in mevalonate kinase deficiency
Mevalonate kinase deficiency (MKD) is an autosomal recessive auto‑inflammatory disease, caused by impairment of the mevalonate pathway. Although the molecular mechanism remains to be elucidated, there is clinical evidence suggesting that other regulatory genes may be involved in determining the phenotype. The identification of novel target genes may explain non‑homogeneous genotype‑phenotype correlations, and provide evidence in support of the hypothesis that novel regulatory genes predispose or amplify deregulation of the mevalonate pathway in this orphan disease. In the present study, DNA samples were obtained from five patients with MKD, which were then analyzed using whole exome sequencing. A missense variation in the PEX11γ gene was observed in homozygosis in P2, possibly correlating with visual blurring. The UNG rare gene variant was detected in homozygosis in P5, without correlating with a specific clinical phenotype. A number of other variants were found in the five analyzed DNA samples from the MKD patients, however no correlation with the phenotype was established. The results of the presents study suggested that further analysis, using next generation sequencing approaches, is required on a larger sample size of patients with MKD, who share the same MVK mutations and exhibit ‘extreme’ clinical phenotypes. As MVK mutations may be associated with MKD, the identification of specific modifier genes may assist in providing an earlier diagnosis
Off-normal and failure condition analysis of the MITICA negative-ion accelerator
The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by \u201coff-normal\u201d operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the \u201coff-normal\u201d operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam