3,658 research outputs found

    Fermi acceleration and suppression of Fermi acceleration in a time-dependent Lorentz Gas

    Full text link
    We study some dynamical properties of a Lorentz gas. We have considered both the static and time dependent boundary. For the static case we have shown that the system has a chaotic component characterized with a positive Lyapunov Exponent. For the time-dependent perturbation we describe the model using a four-dimensional nonlinear map. The behaviour of the average velocity is considered in two situations (i) non-dissipative and (ii) dissipative. Our results show that the unlimited energy growth is observed for the non-dissipative case. However, when dissipation, via damping coefficients, is introduced the senary changes and the unlimited engergy growth is suppressed. The behaviour of the average velocity is described using scaling approach

    Measuring Online Social Bubbles

    Full text link
    Social media have quickly become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view, and even foster polarization and misinformation. Here we explore and validate this hypothesis quantitatively for the first time, at the collective and individual levels, by mining three massive datasets of web traffic, search logs, and Twitter posts. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to search. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at the collective and individual level. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside "social bubbles". Our results could lead to a deeper understanding of how technology biases our exposure to new information

    In-flight dissipation as a mechanism to suppress Fermi acceleration

    Full text link
    Some dynamical properties of time-dependent driven elliptical-shaped billiard are studied. It was shown that for the conservative time-dependent dynamics the model exhibits the Fermi acceleration [Phys. Rev. Lett. 100, 014103 (2008)]. On the other hand, it was observed that damping coefficients upon collisions suppress such phenomenon [Phys. Rev. Lett. 104, 224101 (2010)]. Here, we consider a dissipative model under the presence of in-flight dissipation due to a drag force which is assumed to be proportional to the square of the particle's velocity. Our results reinforce that dissipation leads to a phase transition from unlimited to limited energy growth. The behaviour of the average velocity is described using scaling arguments.Comment: 4 pages, 5 figure

    Dynamics of Snoring Sounds and Its Connection with Obstructive Sleep Apnea

    Get PDF
    Snoring is extremely common in the general population and when irregular may indicate the presence of obstructive sleep apnea. We analyze the overnight sequence of wave packets --- the snore sound --- recorded during full polysomnography in patients referred to the sleep laboratory due to suspected obstructive sleep apnea. We hypothesize that irregular snore, with duration in the range between 10 and 100 seconds, correlates with respiratory obstructive events. We find that the number of irregular snores --- easily accessible, and quantified by what we call the snore time interval index (STII) --- is in good agreement with the well-known apnea-hypopnea index, which expresses the severity of obstructive sleep apnea and is extracted only from polysomnography. In addition, the Hurst analysis of the snore sound itself, which calculates the fluctuations in the signal as a function of time interval, is used to build a classifier that is able to distinguish between patients with no or mild apnea and patients with moderate or severe apnea

    Influence of boundary conditions on quantum escape

    Get PDF
    It has recently been established that quantum statistics can play a crucial role in quantum escape. Here we demonstrate that boundary conditions can be equally important - moreover, in certain cases, may lead to a complete suppression of the escape. Our results are exact and hold for arbitrarily many particles.Comment: 6 pages, 3 figures, 1 tabl
    corecore