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a b s t r a c t

Snoring is extremely common in the general population and when irregular may indicate
the presence of obstructive sleep apnea. We analyze the overnight sequence of wave
packets — the snore sound — recorded during full polysomnography in patients referred
to the Sleep Laboratory due to suspected obstructive sleep apnea. We hypothesize that
irregular snore, with duration in the range between 10 and 100 s, correlates with
respiratory obstructive events. We find that the number of irregular snores — easily
accessible, and quantified by what we call the snore time interval index (STII) — is in good
agreement with the well-known apnea–hypopnea index, which expresses the severity
of obstructive sleep apnea and is extracted only from polysomnography. In addition, the
Hurst analysis of the snore sound itself, which calculates the fluctuations in the signal as
a function of time interval, is used to build a classifier that is able to distinguish between
patients with no or mild apnea and patients with moderate or severe apnea.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Temporal patterns of natural events can be used to detect hidden dynamics [1]. In fact, this connection dates back
to Hurst’s work [2] on the long-term memory (i.e. the autocorrelation) of a time series. This approach has been used to
analyze respiratory sound events, and for instance the time interval between consecutive crackling sounds, generatedwhen
a collapsed airway opens, has been related to both lung structure and surface properties of the lung coating fluids [3,4].
The dynamics of various other physiological signals has been investigated with the help of tools derived from information
theory and statistical mechanics (see e.g. [5,6] and references therein).

Snoring is perhaps the best known respiratory sound, and is characterized by a loud sound with frequency content
between 20 and 300 Hz. It is caused by the vibration of soft tissues from the upper airway, including soft palate, uvula,
tonsils, tonsilar pillars, base of tongue, lateral pharyngeal walls and mucous membranes [7]. Snoring occurs during sleep,
when the pharyngeal muscles relax and may block the airway. Snoring is common in the general population, and does
not necessarily indicate a disease. In contrast, irregular snoring is one of the hallmark signs suggestive of Obstructive Sleep
Apnea (OSA). OSA is themost common sleep-disordered breathing, and is characterized by repetitive events of upper airway
obstruction during sleep, causing total or partial cessation of airflow (apneas and hypopneas, respectively) [8].
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A respiratory event is defined as apnea or hypopnea if its duration exceeds 10 s. Apnea is characterized by the cessation
of airflow, while hypopnea is defined as a substantial reduction — of at least 50% — in airflow. OSA is a major public-
health problem due to the high prevalence in the adult population (ranging from 4% to 10%), and due to the poor outcome
when not recognized and treated. OSA is associated with recurrent asphyxia, fragmented sleep and generation of negative
intrathoracic pressure during futile efforts to breath [9]. Although the patient is by and large unaware of these recurrent
respiratory episodes during sleep, the consequences are multiple and may include excessive daytime sleepiness, fatigue,
poor cognitive function and quality of life, as well as increased risk of motor vehicle accidents, metabolic and cardiovascular
diseases. Full polysomnography is the gold standard method for OSA diagnosis, and the most important index expressing
the severity of OSA is the apnea–hypopnea index (AHI), which is the average number of apnea or hypopnea events per hour.
Sleep apnea is usually classified into mild, moderate or severe, depending on whether the AHI lies between 5 and 15 (mild),
15 and 30 (moderate), or above 30 events/h (severe) [10]. Themajor limitation of polysomnography is that it is an expensive
and laborious test, which requires an overnight sleep in a specialized laboratory under the supervision of a sleep technician.
Therefore, the development of alternative and simpler methods for the diagnosis of OSA is a priority [11].

Irregular snoring andwitnessed apneas are themajor signals indicatingOSA and there is an increasing amount of research
trying to relate OSA with snoring patterns. Most methods in the literature try to establish a correlation between OSA and
either the number of snore events or the wave features of the snore such as intensity, sound frequency, number of snore
events, spectral density, or a combination of these features [12–14]. Recently, Cavusoglu et al. [15,16] proposed the use of
sequential properties of snoring episodes for OSA identification. They built sequences of snoring episode duration, snoring
episode time separations and average snoring episode power, andwere able to show that, using statistical properties of these
sequences tomeasure snore regularity, OSApatients exhibit a greater degree of irregularity as comparedwith simple snorers.
Following a related path, in this work we focus on the dynamics of irregular snoring episodes, and define a new Index, called
the Snore Time Interval Index (STII), showing a strong positive correlation with the well-known apnea–hypopnea index.
Furthermore, by a fluctuation analysis of the snore sound, through Hurst’s R/S analysis, we build an automated classifier
which is able to distinguish between patients with no or mild OSA and patients with moderate or severe OSA. In a similar
spirit, a number of studies focused on the study of dynamic properties of sleep electroencephalogram (EEG) signals and
their relation to OSA [17–19]. Here we work directly with acoustic signals, whose acquisition, in contrast with EEG signals,
requires very simple equipment and no direct contact with the patients.

The remainder of this paper is organized as follows. In Section 2 we describe details regarding data acquisition and
processing, and introduce the mathematical definitions used in this work. In Section 3 we present the results, and the paper
ends in Section 4, in which we provide a discussion and our conclusions.

2. Methods

2.1. Experimental and pre-processing details

We analyzed snore records from patients referred to the sleep laboratory due to suspected OSA. The patients slept in a
bed at the Sleep Laboratory of the Heart Institute at Clinics Hospital in São Paulo, Brazil, and we recorded the sounds in the
room while the patients were simultaneously evaluated by a full polysomnography exam.

The population of 17 patients for which sound and polysomnography data are available was characterized by a
male/female ratio of 11/6, average age 50 ± 10 years, average body mass index 30.7 ± 6.7 kg/m2, and average
apnea–hypopnea index 25.5 ± 22.5 events/h. Out of the 17 patients in the present study, 4 suffered from mild OSA, 6
from moderate OSA, and 7 from severe OSA.

The sound-recording system is based on a 16-bit audio codec (PCM 2901, Texas Instruments, USA) with a 4th order
low-pass Butterworth analog filter (cutoff frequency of 5 kHz) and a 4th order high-pass Butterworth analog filter (cutoff
frequency of 20 Hz). The audio codec is responsible for the acquisition (sampling frequency of 44.1 kHz) of the sound
captured by the microphones, and the transmission of the recorded data to a laptop computer by a USB serial input. The
sound was captured by two microphones located at the headboard of the bed, at a distance of 90 cm from each other.

Themicrophones acquired the sound S(t) emitted by the patient plus the ambient noise, with a total time T , and recorded
the data into a microcomputer for later analysis. Since the frequency content of the snore signal is predominantly between
20 and 300 Hz, the first step of the analyses was to digitally filter the signal, reducing the noise ratio. We found that the
most suitable filter for dismissing the unwanted ambient noise while still keeping a strong snore signal was a 1024th-order
band pass filter between 80 and 300 Hz.

Following the filtering, we square the filtered signal Sf (t) and sum over all [Sf (t)]2 in a time window ∆t , with a window
overlap of 50% between consecutive windows, building a new series of sound intensities Im,

Im =

(m
2 +1)∆t
t= m

2 ∆t

[Sf (t)]2, (1)

withm going from zero to 2(T/∆t − 1), i.e., the series {Im} has a total of 2(T/∆t) − 1 elements. We choose ∆t = 1 s, since
the normal breathing period is approximately 5 s, and we found that this discretization gives us a good overall precision for
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Fig. 1. Sound intensity versus time, showing the time intervals between consecutive detected snore events.

our study while keeping the signal less rough. We notice that the new series still exhibits considerable background noise,
most of it coming from air-conditioning and electronic devices used by the Sleep Laboratory. From a region in the series
without snore, we could determine a threshold I0 belowwhich all sounds are regarded as ambient noise, and then postulate
that a group of points in our new series defines a single snore event when all Im in the group lie above the threshold I0.
According to this definition, the jth snore event starts at point m(j) and ends at the first point after m(j) for which the
corresponding intensity is less than I0. Thus, in time units the jth snore event will start at (1/2)∆t m(j). We then define the
time interval between consecutive snores as the time from the beginning of one snore event to the beginning of the next
one, δtj = (1/2)∆t (m(j) − m(j − 1)), as illustrated in Fig. 1.

At the moment, it is necessary to adjust the value of I0 for each patient, considering the intensities of the snore and the
ambient noise. We built a software program which is able to read the sound data and process the signal, giving us a log file
containing the recording time in hours, minutes and seconds, and the average, median and standard deviation of the δtj, as
well as the maximum and minimum values of δtj.

As breathing, snoring is an irregular phenomenon and it is an indicative of instability in the upper airways. Snore usually
persists at each breathing cycle until one of three situations occurs: (i) the obstruction momentarily disappears; (ii) there is
a partial collapse of the upper airways, restricting the airflow and leading to hypopnea; or (iii) the upper airway collapses,
impairing the airflow and leading to an apnea event. We assume that in case (i) this momentary situation will persist for
more than 100 s, and in both cases (ii) and (iii), after the patient restores normal breathing, (s)he will either get back to
snoring or make a noise which will cross the ambient noise threshold I0.

We then hypothesize that in a person that snores but does not have sleep apnea disorder, most snore time intervals δt
will be less than 10 s or much larger than 100 s. On the other hand, for a patient with OSA we should find a lot of snore time
intervals between 10 and 100 s, which in fact we found. Thus, in our analyses we focus on the range of time intervals δt
between 10 and 100 s.

2.2. The snore time interval index

The apnea–hypopnea index (AHI) is the classical index to determine if a person has sleep apnea, and is only fully
characterized when a person spends a night of sleep in a sleep laboratory wired with electrodes and using an air mask
to measure air flow. Along the night a specialist medical doctor goes through the data and manually counts the number of
apnea and hypopnea events NAH occurring during the whole night. The AHI index is then evaluated as

AHI = NAH/T , (2)

where T is the number of sleep hours.
From the time intervals δt , defined in the previous subsection, we introduce what we call the Snore Time Interval Index

(STII), which is related to the number Nδt of snore time intervals for which 10 s < δt < 100 s, being explicitly calculated as

STII = Nδt/T . (3)

As we will show in Section 3, there is a strong positive correlation between AHI and STII.

2.3. A classifier based on Hurst’s R/S analysis

Along the lines of Ref. [20], we also built an automated classifier from a fluctuation analysis of the intensities Im, based
on Hurst’s R/S method (see e.g. [21]), which was introduced as a means of measuring memory effects in a time series.
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The R/S method involves dividing a time series into intervals of size τ , withinwhich a rescaled range is calculated as follows.
For the kth interval, which we denote by Lk, we first determine the average of the time series,

zτ ,k =
1
τ


m∈Lk

Im, (4)

which is used to define a cumulative deviation as

Zm,k =

m
j=ℓk

(Ij − zτ ,k), (5)

ℓk labeling the left end of Lk. From this cumulative deviation, we then extract a range,

Rτ ,k = max
m∈Lk

Zm,k − min
m∈Lk

Zm,k, (6)

which is divided by the standard deviation of the original series,

Sτ ,k =


1
τ


m∈Lk

(Im − zτ ,k)2, (7)

to yield the rescaled range Rτ ,k/Sτ ,k of a single interval. Repeating this procedure for all intervals Lk, we obtain the average
rescaled range

ρ(τ) =
1
nτ


k

Rτ ,k

Sτ ,k
, (8)

where nτ denotes the number of nonoverlapping intervals of size τ that can be fit into the original series.
When applied to a time series generated by a single dynamics, such as in fractional Brownianmotion, the rescaled-range

analysis yields a function ρ(τ) following a power-law with a so-called Hurst exponent H , which gauges memory effects on
the dynamics. Different values ofH indicate different underlying dynamics, and this has been used in a number of situations
to distinguish between the systems producing the time series. Specifically, this approach can differentiate between healthy
and diseased subjects as regards cardiac [22], neurological [23,24], and respiratory function [25]. However, as shown in
the next section, this characterization in terms of a single parameter (the Hurst exponent) fails in the case of OSA, but the
ρ(τ) curves still hide useful information about the patients’ conditions. In order to extract that information, we resort to
pattern-classification tools.

Given a set {τj} = {τ1, τ2, . . . , τd} of choices for the interval size τ , the corresponding set ρ(τ) measures the average
relative fluctuation of the time series as a function of τ , and this can be seen as a vector in a multidimensional space,

x = (ρ (τ1) , ρ (τ2) , . . . , ρ (τd))
t ,

in which t indicates the vector transpose. The set of all vectors obtained by the R/S analysis can then be fed into standard
algorithms from the pattern classification literature. Here, we employ a variant of the Karhunen–Loève (KL) transformation
(see Ref. [26]), which can be seen as an improvement over principal-component analysis, implementing supervision and
relying on the compression of discriminatory information contained in the class means.

In order to build a classifier whose performance is statistically significant, we split the intensity signals from each patient
into subsignals containing 1024 points (corresponding to 512 s, an amount of time during which many snore events can
happen), obtaining a total of 936 subsignals for all patients. The R/S analysis was performed for values of the time window
τ corresponding to the nearest integers obtained from the powers of 21/4 from 4 to 1024 points (with a total of 33 values).

The first step of the KL transformation involves projecting the feature vectors xi (i labelling the vectors obtained from
different sound samples) onto the eigenvectors of the within-class covariance matrix SW , defined by

SW =
1
N

NC
k=1

Nk
i=1

yik(xi − mk)(xi − mk)
T , (9)

whereNC is the number of different classes,Nk is the number of vectors in class k, andmk is the average vector of class k. The
element yik is equal to one if xi belongs to class k, and zero otherwise. The resulting vectors are then rescaled by a diagonal
matrix built from the eigenvalues λj of SW . In matrix notation, this operation can be written as

X′
= 3−

1
2 UTX, (10)

inwhichX is thematrixwhose columns are the training vectors xi,3 = diag(λ1, λ2, . . .), andU is thematrixwhose columns
are the eigenvectors of SW . Finally, the resulting vectors are projected onto the eigenvectors of the between-class covariance
matrix SB,

SB =

NC
k=1

Nk

N
(mk − m)(mk − m)T , (11)
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where m is the overall average vector. The full transformation can be written as

X′′
= VTΛ−

1
2 UTX. (12)

V being the matrix whose columns are the eigenvectors of SB (calculated from X′).

3. Results

As shown in Fig. 2, there is a remarkable agreement between the histogram of the duration of apnea or hypopnea
events and the histogram of snore time intervals. Moreover, our results reveal a strong positive correlation between the
apnea–hypopnea index and the snore time interval index, as depicted in Fig. 3. Notice that, assuming a perfect correlation
between AHI and STII when it comes to classifying OSA into no/mild versus moderate/severe, the STII yields only one false
negative and two false positive results (false positives being usually more tolerable mistakes).

Fig. 4 shows examples of curves obtained by Hurst’s R/S analysis of sound samples taken from four different patients.
Estimates of the Hurst exponents of the different curves for all patients, obtained by linear fits of the log–log curves,
yielded results ranging between 0.7 and 0.8, with no significance correlation to the patients’ condition. As described in
the previous section, the Hurst curves, interpreted as feature vectors, were then fed into the automated classifier based on
the KL transformation. The classifier was trained to recognize feature vectors of sound samples coming from two categories:
(a) patients with no or mild OSA; and (b) patients suffering from moderate or severe OSA. The training was performed by
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randomly selecting 748 out of the available 936 subsignals (about 80% of the total), and using the remaining signals for
testing. During the training step, the mean transformed vectors of each class are extracted, and the (transformed) testing
vectors are assigned to the class corresponding to the nearest mean transformed vector. With only two possible classes, the
transformationmatrix effectively reduces to a single line, i.e. a transformation vector.1 The inset in Fig. 4 shows, for a typical
transformation vector, the (unnormalized) weights of the components corresponding to different sizes of the time window.
The peaks in the curve indicate those components which are most relevant for the decision process. Notice the existence of
large peaks around τ = 20 (log τ ≃ 1.3), corresponding to a time interval of 10 s, a time interval characteristic of many
snore events in patients suffering from OSA.

This procedurewas repeated for 100 distinct choices of training and testing vectors. Based on each subsignal individually,
the average classification error during the testing step was 37% for category (a) and 28% for category (b). However, if one
extracts a classification from a majority rule of the corresponding results for all subsignals belonging to a given patient, 16
of the 17 patients are correctly assigned to their respective categories. Interestingly, the misclassified patient has an AHI of
15.2, and thus lies on the borderline between categories.

4. Conclusions

To summarize, in the present studywe propose a simple and accuratemethod to identify OSA based on the time intervals
between snore events, and the average number of snore events per unit time, as revealed by the intensity of the sound.
Our method of analyzing snore correlated remarkably well with the AHI derived from polysomnography, which is the gold
standard method for OSA diagnosis. Moreover, an automated classifier based on the R/S analysis of the snore intensities
was able to correctly identify patients with moderate to severe OSA.

Of course, our study has some limitations. Firstly, we tested this algorithm in a relatively small sample of patients
referred to the Sleep Laboratory under controlled conditions. We have no means to predict at this stage how this method
will perform in other settings and populations. However, it must be stressed that the physical conditions of the laboratory
are probably similar to most bedrooms. We acknowledge that due to the simplicity of our snore detection scheme, some
snore events may not be detected or some loud sound may be detected as a snore. However, these false or undetected
snore events are expected to represent a small fraction of all events, and thus will be washed out in the statistics. We
predict thatmore sophisticatedmethods to detect snoresmay improve the snore time interval index. Nevertheless, ourwork
represents a first step towards establishing guidelines for snore classification and revealing a correlation between snoring
events suspected of sleep-disordered breathing and the AHI, goals manifested in a recent medical review on the acoustics of
snoring [27].

1 This is a consequence of the fact that the subspace defined by the relative positions of the average vectors of the two classes, entering the definition of
SB in (11), is one-dimensional.
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