66 research outputs found
On the use of the proximity force approximation for deriving limits to short-range gravitational-like interactions from sphere-plane Casimir force experiments
We discuss the role of the proximity force approximation in deriving limits
to the existence of Yukawian forces - predicted in the submillimeter range by
many unification models - from Casimir force experiments using the sphere-plane
geometry. Two forms of this approximation are discussed, the first used in most
analyses of the residuals from the Casimir force experiments performed so far,
and the second recently discussed in this context in R. Decca et al. [Phys.
Rev. D 79, 124021 (2009)]. We show that the former form of the proximity force
approximation overestimates the expected Yukawa force and that the relative
deviation from the exact Yukawa force is of the same order of magnitude, in the
realistic experimental settings, as the relative deviation expected between the
exact Casimir force and the Casimir force evaluated in the proximity force
approximation. This implies both a systematic shift making the actual limits to
the Yukawa force weaker than claimed so far, and a degree of uncertainty in the
alpha-lambda plane related to the handling of the various approximations used
in the theory for both the Casimir and the Yukawa forces. We further argue that
the recently discussed form for the proximity force approximation is
equivalent, for a geometry made of a generic object interacting with an
infinite planar slab, to the usual exact integration of any additive two-body
interaction, without any need to invoke approximation schemes. If the planar
slab is of finite size, an additional source of systematic error arises due to
the breaking of the planar translational invariance of the system, and we
finally discuss to what extent this may affect limits obtained on power-law and
Yukawa forces.Comment: 11 page, 5 figure
Contribution of drifting carriers to the Casimir-Lifshitz and Casimir-Polder interactions with semiconductor materials
We develop a new theory for Casimir-Lifshitz and Casimir-Polder interactions
with semiconductor surfaces that takes into account charge drift in the bulk
material. The corresponding frequency-dependent dispersion relations describe a
crossover between Lifshitz results for dielectrics and for good conductors. In
the quasi-static limit, our calculated reflection amplitudes coincide with
those recently computed to account for Debye screening in the thermal Lifshitz
force with conducting surfaces with small density of carriers.Comment: 4 pages version 2: improved discussion of perfect conductor and
perfect dielectric limits. Version 3; includes discussion of limits of
applicability of the analysis. Version $; updated reference
Quantum corrections to the geodesic equation
In this talk we will argue that, when gravitons are taken into account, the
solution to the semiclassical Einstein equations (SEE) is not physical. The
reason is simple: any classical device used to measure the spacetime geometry
will also feel the graviton fluctuations. As the coupling between the classical
device and the metric is non linear, the device will not measure the
`background geometry' (i.e. the geometry that solves the SEE). As a particular
example we will show that a classical particle does not follow a geodesic of
the background metric. Instead its motion is determined by a quantum corrected
geodesic equation that takes into account its coupling to the gravitons. This
analysis will also lead us to find a solution to the so-called gauge fixing
problem: the quantum corrected geodesic equation is explicitly independent of
any gauge fixing parameter.Comment: Revtex file, 6 pages, no figures. Talk presented at the meeting
"Trends in Theoretical Physics II", Buenos Aires, Argentina, December 199
Continuous quantum measurement of a Bose-Einstein condensate: a stochastic Gross-Pitaevskii equation
We analyze the dynamics of a Bose-Einstein condensate undergoing a continuous
dispersive imaging by using a Lindblad operator formalism. Continuous strong
measurements drive the condensate out of the coherent state description assumed
within the Gross-Pitaevskii mean-field approach. Continuous weak measurements
allow instead to replace, for timescales short enough, the exact problem with
its mean-field approximation through a stochastic analogue of the
Gross-Pitaevskii equation. The latter is used to show the unwinding of a dark
soliton undergoing a continuous imaging.Comment: 13 pages, 10 figure
Quantum Dynamical Effects as a Singular Perturbation for Observables in Open Quasi-Classical Nonlinear Mesoscopic Systems
We review our results on a mathematical dynamical theory for observables for
open many-body quantum nonlinear bosonic systems for a very general class of
Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian
provide a singular "quantum" perturbation for observables in some "mesoscopic"
region of parameters. In particular, quantum effects result in secular terms in
the dynamical evolution, that grow in time. We argue that even for open quantum
nonlinear systems in the deep quasi-classical region, these quantum effects can
survive after decoherence and relaxation processes take place. We demonstrate
that these quantum effects in open quantum systems can be observed, for
example, in the frequency Fourier spectrum of the dynamical observables, or in
the corresponding spectral density of noise. Estimates are presented for
Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear
optical systems prepared in large amplitude coherent states. In particular, we
show that for Bose-Einstein condensate systems the characteristic time of
deviation of quantum dynamics for observables from the corresponding classical
dynamics coincides with the characteristic time-scale of the well-known quantum
nonlinear effect of phase diffusion.Comment: changed content
Bragg spectroscopy for measuring Casimir-Polder interactions with Bose-Einstein condensates above corrugated surfaces
We propose a method to probe dispersive atom-surface interactions by measuring via two-photon Bragg spectroscopy the dynamic structure factor of a Bose-Einstein condensate above corrugated surfaces. This method takes advantage of the condensate coherence to reveal the spatial Fourier components of the lateral Casimir-Polder interaction energy.Fil: Moreno, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dalvit, Diego A. R.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin
- …