236 research outputs found

    Transcriptome sequencing of Festulolium accessions under salt stress

    Get PDF
    peer-reviewedObjectives The objective of this study was to establish transcriptome assemblies of Festulolium hybrids under salt stress, and identify genes regulated across the hybrids in response to salt stress. The development of transcriptome assemblies for Festulolium hybrids and cataloguing of genes regulated under salt stress will facilitate further downstream studies. Results Plants were grown at three salt concentrations (0.5%, 1% and 1.5%) and phenotypic and transcriptomic data was collected. Salt stress was confirmed by progressive loss of green leaves as salt concentration increased from 0 to 1.5%. We generated de-novo transcriptome assemblies for two Festulolium pabulare festucoid genotypes, for a single Festulolium braunii genotype, and a single F. pabulare loloid genotype. We also identified 1555 transcripts that were up regulated and 1264 transcripts that were down regulated in response to salt stress in the Festulolium hybrids. Some of the identified transcripts showed significant sequence similarity with genes known to be regulated during salt and other abiotic stresses

    Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of Brachypodium distachyon

    Get PDF
    Drought is an important environmental stress limiting the productivity of major crops worldwide. Understanding drought tolerance and possible mechanisms for improving drought resistance is therefore a prerequisite to develop drought-tolerant crops that produce significant yields with reduced amounts of water. Brachypodium distachyon (Brachypodium) is a key model species for cereals, forage grasses and energy grasses. In this study, initial screening of a Brachypodium germplasm collection consisting of 138 different ecotypes exposed to progressive drought, highlighted the natural variation in morphology, biomass accumulation and responses to drought stress. A core set of ten ecotypes, classified as being either tolerant, susceptible or intermediate, in response to drought stress, were exposed to mild or severe (respectively 15% and 0% soil water content) drought stress and phenomic parameters linked to growth and colour changes were assessed. When exposed to severe drought stress, phenotypic data and metabolite profiling combined with multivariate analysis revealed a remarkable consistency in separating the selected ecotypes into their different pre-defined drought tolerance groups. Increases in several metabolites, including for the phytohormones jasmonic acid and salicylic acid, and TCA-cycle intermediates, were positively correlated with biomass yield and with reduced yellow pixel counts; suggestive of delayed senescence, both key target traits for crop improvement to drought stress. While metabolite analysis also separated ecotypes into the distinct tolerance groupings after exposure to mild drought stress, similar analysis of the phenotypic data failed to do so, confirming the value of metabolomics to investigate early responses to drought stress. The results highlight the potential of combining the analyses of phenotypic and metabolic responses to identify key mechanisms and markers associated with drought tolerance in both the Brachypodium model plant as well as agronomically important crops

    Modeling soil organic carbon dynamics in temperate forests with Yasso07

    Get PDF
    In a context of global changes, modeling and predicting the dynamics of soil carbon stocks (CSs) in forest ecosystems are vital but challenging. Yasso07 is considered to be one of the most promising models for such a purpose. We examine the accuracy of its prediction of soil carbon dynamics over the whole French metropolitan territory at a decennial timescale. We used data from 101 sites in the RENECOFOR network, which encompasses most of the French temperate forests. These data include (i) the quantity of above-ground litterfall from 1994 to 2008, measured yearly, and (ii) the soil CSs measured twice at an interval of approximately 15 years (once in the early 1990s and around 2010). We used Yasso07 to simulate the annual changes in carbon stocks (ACCs; in tC&thinsp;ha−1&thinsp;yr−1) for each site and then compared the estimates with actual recorded data. We carried out meta-analyses to reveal the variability in litter biochemistry in different tree organs for conifers and broadleaves. We also performed sensitivity analyses to explore Yasso07's sensitivity to annual litter inputs and model initialization settings. At the national level, the simulated ACCs (+0.00±0.07&thinsp;tC&thinsp;ha−1&thinsp;yr−1, mean&thinsp;±&thinsp;SE) were of the same order of magnitude as the observed ones (+0.34±0.06&thinsp;tC&thinsp;ha−1&thinsp;yr−1). However, the correlation between predicted and measured ACCs remained weak (R2&lt;0.1). There was significant overestimation for broadleaved stands and underestimation for coniferous sites. Sensitivity analyses showed that the final estimated CS was strongly affected by settings in the model initialization, including litter and soil carbon quantity and quality and also by simulation length. Carbon quality set with the partial steady-state assumption gave a better fit than the model with the complete steady-state assumption. With Yasso07 as the support model, we showed that there is currently a bottleneck in soil carbon modeling and prediction due to a lack of knowledge or data on soil carbon quality and fine-root quantity in the litter.</p

    Molecular Evolutionary Trends and Feeding Ecology Diversification in the Hemiptera, Anchored by the Milkweed Bug Genome

    Get PDF
    Background: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. Results: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. Conclusions: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus’s strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes

    Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary

    Get PDF
    Climate change can result in a slow disappearance of forests dominated by less drought-tolerant native European beech (Fagus sylvatica) and oak species (Quercus spp.) and further area expansion of more drought-tolerant non-native black locust (Robinia pseudoacacia) against those species in Hungary. We assumed that the shift in plant species composition was modified by selective ungulate browsing. Thus, we investigated which woody species are selected by browsing game. We have collected data on the species composition of the understory and the browsing impact on it in five different Hungarian even-aged forests between 2003 and 2005. Based on these investigations the non-native Robinia pseudoacacialiving under more favourable climatic conditions was generally preferred (Jacobs’ selectivity index: D=0.04±0.77), while the nativeFagus sylvatica and Quercus spp. (Q. petraea, Q. robur), both more vulnerable to increasing aridity, were avoided (D=-0.37±0.11;-0.79±0.56;-0.9±0.16; respectively) among target tree species. However, economically less or not relevant species, e.g. elderberry (Sambucus spp.), blackberry (Rubus spp.) or common dogwood (Cornus sanguinea) were the most preferred species (D=0.01±0.71; -0.12±0.58; -0.2±0.78, respectively). Our results imply that biodiversity conservation, i.e. maintaining or establishing a multi-species understory layer, can be a good solution to reduce the additional negative game impact on native target tree species suffering from drought. Due to preference for Robinia pseudoacaciaselective browsing can decelerate the penetration of this species into native forest habitats. We have to consider the herbivorous pressure of ungulates and their feeding preferences in planning our future multifunctional forests in the light of climate change impacts

    Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.</p> <p>Results</p> <p>In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains <it>Apoa2 </it>gene. Sequencing analysis revealed polymorphisms of <it>Apoa2 </it>in TH mice, suggesting <it>Apoa2 </it>as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs.</p> <p>Conclusions</p> <p>We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in <it>Apoa2 </it>gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.</p

    World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection

    Get PDF
    The genetic trait of lactase persistence (LP) is associated with at least five independent functional single nucleotide variants in a regulatory region about 14 kb upstream of the lactase gene [-13910*T (rs4988235), -13907*G (rs41525747), -13915*G (rs41380347), -14009*G (rs869051967) and -14010*C (rs145946881)]. These alleles have been inferred to have spread recently and present-day frequencies have been attributed to positive selection for the ability of adult humans to digest lactose without risk of symptoms of lactose intolerance. One of the inferential approaches used to estimate the level of past selection has been to determine the extent of haplotype homozygosity (EHH) of the sequence surrounding the SNP of interest. We report here new data on the frequencies of the known LP alleles in the 'Old World' and their haplotype lineages. We examine and confirm EHH of each of the LP alleles in relation to their distinct lineages, but also show marked EHH for one of the older haplotypes that does not carry any of the five LP alleles. The region of EHH of this (B) haplotype exactly coincides with a region of suppressed recombination that is detectable in families as well as in population data, and the results show how such suppression may have exaggerated haplotype-based measures of past selection

    Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease

    Get PDF
    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g. ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore