206 research outputs found
Pylons in the back yard: local planning and perceived risks to health
Health fears arising from the presence of high-voltage power lines in residential areas have received recent attention in spatial planning. A study of stances taken by planning authorities in England and Wales shows their willingness to give expression to the concerns of local communities through precautionary measures, and the difficulties encountered in the face of official statements and industry opposition. These attempts to embody local feeling in patterns of development are illustrative of the increasing prevalence of a sense of risk in contemporary society. The spatial patterns of risk are also revealed, which owe much to the presence and distribution of industrial infrastructure in the landscape and to the associated contested use of land.</p
Origin of the Spin-Orbital Liquid State in a Nearly J=0 Iridate Ba3ZnIr2O9
We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK
Main Magnets Design Studies for the Non-scaling Fixed Field Alternating Gradient Accelerator for a Final Acceleration Stage of the Neutrino Factory
Abstract The International Design Study of the Neutrino Factory (IDS-NF) aims to design the next generation facility for the precision neutrino oscillation searches. The non scaling Fixed Field Alternating Gradient Accelerator was proposed for the final muon beam acceleration in order to reduce the cost of the final acceleration. A superconducting magnet design based on the independent multipole coils approach using the ROXIE code is presented. The feasibility of the magnet construction together with the quench limitations is discussed
Recommended from our members
Jahn-Teller driven electronic instability in thermoelectric tetrahedrite
Tetrahedrite, Cu12Sb4S13, is an abundant mineral with excellent thermoelectric properties owing to its low thermal conductivity. The electronic and structural origin of the intriguing physical properties of tetrahedrite, including its metal-to-semiconductor transition, remains largely unknown. This work presents the first determination of the low-temperature structure of tetrahedrite that accounts for its unique properties. Contrary to prior conjectures, our results show that the trigonal-planar copper cations remain in planar coordination below the metal-to-semiconductor transition. The atomic displacement parameters of the trigonal-planar copper cations, which have been linked to low thermal conductivity, increase by 200% above the metal-to-semiconductor transition. The phase transition is consequence of the orbital degeneracy of the highest occupied 3d cluster orbitals of the copper clusters found inside the sodalite cages in the cubic phase. This study reveals that a Jahn-Teller electronic instability leads to the formation of “molecular-like” Cu57+ clusters and suppresses copper rattling vibrations due to the strengthening of direct copper-copper interactions. Our first-principles calculations demonstrate that the structural phase transition opens a small band gap in the electronic density of states and eliminates the unstable phonon modes. The present results provide insights on the interplay between phonon transport, electronic properties and crystal structure in mixed-valence compounds
- …
